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ABSTRACT: 
The ground amplification effects caused by irregular surface topography and geological conditions have been 
the focus of research by both seismologists and earthquake engineers for the last three decades. Many methods 
have been developed. However, only few analytical solutions are available so far, and the majority of the 
solutions for the wave propagation are supposed in the single-phase elastic medium. In this paper, the 
earthquake ground motions of local irregular sites with saturated soil were investigated by analytical solutions, 
and a series of results were obtained. Firstly, on the basis of Biot dynamic theory, an analytical method for 
scattering of plane waves by saturated soil was developed using Fourier-Bessel series expansion technique. 
Using this method, a series of analytical solutions for scattering of plane waves by saturated soil local irregular 
site can be got. Secondly, on the base of the analytical solutions mentioned above, the numerical results were 
given to illustrate that the ground motions of the saturated soil local irregular site not only depend on the angle of 
incidence, the dimensionless frequency of the incident waves, but also depend on the saturation and porosity of the 
soil deposits, the stiffness and Poisson�s ratio of the solid-skeleton, and the boundary conditions. At the same time, 
the soft saturated soil site can be simulated by elastic one-phase solid model or by fluid-saturated porous media 
model, but the results of the ground motion by the two models were great different. 
KEYWORDS: Fluid saturated porous medium, Complex local site, Scattering of seismic waves, Analytical 
solution 

1. INTRODUTION 

In many areas of seismological research, the ground amplification effects caused by local irregular sites can be 
an important factor [1]. Therefore, a detailed understanding of these effects is of obvious value to earth- quake 
engineering and seismology, and such effects have been recognized widely as an important factor and extensive 
theoretical and experimental works have been carried out on the subject in the last 3 decades. Various theoretical 
analysis methods have been developed to study the effects of irregular surface topography and geological 
conditions on the ground amplification. In general, these methods can be classified as analytical methods and 
numerical methods. It is believe that the earliest method to be used in treatment of the wave propagation 
problems is due to analytical method. This kind of methods includes separated variable method, 
integral-transformation method, and wave function expansion method, etc. and is applied mainly to the 
problems with linear, isotropic and homogeneous materials and simple geometries. Because modeling the 
seismic wave scattering by local sites involves great complexities, very few analytical solutions are available so 
far, which are: scattering of plane SH wave by semi-cylindrical and semi-elliptical canyon and alluvial valley[2-5]; 
scattering of plane P, SV, SH, and Rayleigh waves by circular- cylindrical canyon and alluvial valley[6-9]; 
scattering of plane P, SV, and SH waves by circular-arc layered alluvial valleys[10][11]; scattering of plane P, SV 
and SH wave by hemispherical canyon and alluvial valley[12][13]. As a result of the limitation of analysis methods, 
the role of numerical methods is increasingly concerned in studying the problems of wave propagations in 
complex medium, and various numerical methods, such as the finite differential method, the finite element 
method, and the boundary element method, etc. have been developed. More detail review of these studies can be 
found in literature by Li.[14] 
In a word, the methods used to study the ground motion amplification effects caused by local sites have got 
great development. But, it is worth paying attention to that all above-mentioned studies are supposed in the 
single-phase elastic medium. In fact, geomaterials are often present in the form of porous solid saturated by 
fluid in nature. Therefore, the study of dynamic response of a fluid-saturated porous medium is of considerable 
interest to applications in geotechnical and earthquake engineering [15]. Biot [16] developed the propagation 
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theory of elastic waves in fluid saturated porous media. But up to date, there is very few analytical solutions 
available for the scattering of plane waves by irregular surface in saturated porous media based on the Biot 
dynamic theory so far. [17][18] Complexities of wave propagation in saturated porous media pose additional 
challenge for the modeling of scattering problems. Therefore, there is a need to develop a systematic approach 
which leads to the solution of scattering problems with saturated porous media. 
The purpose of this paper is to illustrate the methods for solution of the problem about scattering of plane waves 
by saturated soil local site and the effects of surface and subsurface irregularities on ground motion amplification. 
The method of analysis used is wave function expansion method. Firstly, the wave function expansions of 
elastic waves in fluid-saturated porous medium are deduced on the basis of Biot dynamic theory. Based on this 
method and combined with the boundary conditions of each problem, a series of analytical solutions for 
scattering of plane P and SV waves by several typical sites with saturated soil can be developed , which include: 
(1) cylindrical canyons in saturated porous medium; (2) alluvial valleys with saturated soil deposits; (3) 
circular-arc layered valleys consisting of the interaction between water and saturated soil deposits; (4) cylindrical 
cavity in a fluid-saturated porous media half space. Secondly, on the base of the analytical solutions, the 
influence factors of the earthquake ground motions are studied. At the same time, the soft saturated soil site can 
be simulated by elastic one-phase solid model or by fluid-saturated porous media model, but the results of the 
ground motion by the two models were great different.  

2. THEROY OF WAVE PROPOGATION AND WAVE FUNCTION EXPANSIONS IN 
FLUID-SATURATED POROUS MEDIUM 

2.1 Wave equations 

The dynamic equations for saturated porous media with non-viscous fluid proposed by Biot [16] are 
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where u and U are the displacements of solid phase and liquid phase respectively; ue ⋅∇= , U⋅∇=ε , 

aρρρ += 111 , aρρρ += 222 , aρρ −=12 , sn ρρ )1(1 −= , fnρρ =2 , where ρs, ρf, and ρa are the density of solid mass, 
liquid mass, and coupled-mass between solid phase and liquid phase; b is the dissipative coefficient, knb /2ζ= , 
in which ζ is the absolute viscosity, n is porosity, and k is permeability; and N, A, R and Q are elastic modules 
which are defined as: fnKR = , fKnQ )1( −= , µ=N , RQA /2+= λ , where λ  and µ  are the Lame constants of 
the solid skeleton in the saturated porous media, and fK is the bulk modulus of pore water. In this paper, a 
non-dissipative case ( ζ =0) is considered. The constitutive equation for a porous elastic solid containing 
compressible fluid can be expressed as 

( )εδετ QAeN ijijij ++= 2 ,         εσ RQe +=                          （2.2） 
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2.2 Solutions of wave equations 

To solve the governing Eqn. (1), the Helmoltz resolution [19] is applied as follows 
u = gradφ +curlψ ; U = gradΦ +curl Ψ                            （2.3） 

where the potential functions � and ψ are associated with the solid phase of the bulk material, while the 
potential functions Φ and Ψ are associated with the pore fluid. If the wave potentials have harmonic time 
variations, the potentials can be expressed as 

( ) tiezyx ωφφ −= ,, , ( ) tiezyx ω−Φ=Φ ,, , ( ) tiezyx ωψψ −= ,, , ( ) tiezyx ω−Ψ=Ψ ,,              (2.4) 
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Substituting Eqns. (2.3) and (2.4) into Eqn. (2.1), the following two equations with respect to P-wave and 
S-wave potentials of the solid phase are obtained 
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From Eqn. (2.5), it is seen that there are two dilatational waves (referred to as PI wave and PII wave, respectively) 
and one rotational wave (S wave). The general solution P-waves for the solid phase is 

21 φφφ +=                                          (2.6) 
Substituting Eqns. (2.3) and (2.4) into Eqn. (2.1), the wave potentials for the fluid component also can been obtained  
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2.3 Wave function expansions in cylindrical coordinates 

The models presented in this paper are all two-dimensional plan strain problems, so in a cylindrical coordinate 
system Eqn. (2.6) can be expressed as: 

( ) tier ωθφφ −= , , ( ) tier ωθ −Φ=Φ , , ( ) tier ωθψψ −= , , ( ) tier ωθ −Ψ=Ψ ,                 (2.8) 
Taking the wave function of PI waves for example, wave function expansions in cylindrical coordinates will be 
introduced as bellow. 
In cylindrical coordinates for plan strain problems, the fist equation of Eqn. (2.5) with j=1 can be expressed as 
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By using the method of separation of variables with )()(),(1 θθφ Θ= rRr , Eq. (2.9) separates into 
0)( 222

1,
2 =−+′+′′ RrkRrRr a ν , 02 =Θ+Θ′′ ν                       (2.10) 

where ν is the separation constant. For most problems of interest, �1 must be single valued, so )()2( θπθ Θ=+Θ , 
which requires ν=n, where n in an integer. The first equation of Eqn. (2.10) then becomes 
                                0)( 222

1,
2 =−+′+′′ RnrkRrRr a                               (2.11) 

with solution that can be expressed linear combination of either Bessel functions of the fist and second kind, 
)( 1, rkJ an and )( 1, rkY an , or Hankel functions of the fist and second kind, )( 1,

)1( rkH an and )( 1,
)2( rkH an . That is  
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where An, Bn, nA
~ , and nB~ are random constants. The choice of the radial functions, i.e., )( 1, rkJ an and )( 1, rkY an or 

)( 1,
)1( rkH an and )( 1,

)2( rkH an , is dependent upon the physics of the problem. 
The general solution of the second equation of Eqn. (2.10) is 
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where nC and nD are random constants. Then the solution of the wave function �1 can be expressed as 

[ ] )sincos()( )( ),(
0n

1,n1,n1 θθθφ nDnCrkYBrkJAr nnanan ++=∑
∞

=
 or [ ] )sincos()(~ )(~ ),(

0n
1,

)2(
n1,

)1(
n1 θθθφ nDnCrkHBrkHAr nnanan ++=∑

∞

=
(2.14) 

with the time factor )exp( tiω  being omitted. Therefore, the wave functions of steady-state waves can be 
expressed the combination of )( 1, rkJ an and )( 1, rkY an or )( 1,

)1( rkH an and )( 1,
)2( rkH an with θncos  and θnsin . This 

constitutes the foundation of wave function expansion method. 
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3．THE BOUNDARY VALUE PROBLEMS CONSIDERED IN THIS PAPER 

It is seen that the method developed above can provide the foundation for the further analysis of the scattering 
and diffraction of P, SV and Rayleigh waves by the alluvial valleys and other irregular topography conditions in 
a half space of saturated porous media. This paper only focuses on the researches of scattering of plane P and SV 
waves by several typical sites with saturated soil as follows. 

3.1 Cylindrical canyons in saturated porous medium (problem 1) 

The two-dimensional model of problem 1 used in this paper is shown in 
Fig. 1. It represents a half space (y>0) from which a vector of a circle of 
radius a1 and centered at o1 is removed to form a canyon. The width of 
the circular sector at the surface of the half space is 2a and its depth is h. 
The half space is assumed to be saturated porous material. 
In a wave propagation problem, it is important to employ appropriate 
boundary conditions. Deresiewicz, et.al.[19][20] proposed the boundary 
conditions for two different fluid-saturated porous media in contact. One 
is open (pervious)-boundary, and the other is sealed 
(impervious)-boundary. So the boundary conditions on the surface of the 
canyon can be stated as: for pervious boundary conditions 

0== v
xy

v
yy ττ , 0=vσ  at 0=y   and 0== v

rr
v
r ττ θ , 0=vσ  at  r1=a1              (3.1a) 

or for impervious boundary conditions 
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3.2 Circular-arc alluvial valleys with saturated soil deposits (problem 2)  

The two-dimensional model of problem 2 to be analyzed is shown in Fig. 2. The circular-arc alluvial valley with 
saturated soil deposits is embedded in an infinite half-space (y>0). The valley is bounded by a flat ground 
surface, and the shape of the circular-arc is characterized by its center, o1, 
radius, a1, depth, h, and width, 2a as shown in Fig. 2. The half- space is 
assumed as a single-phase, elastic, isotropic, and homogenous solid, with 
its properties characterized by Lame constants, λ and µ , and mass 
density, ρ . The soil deposit is modeled as a saturated porous medium. 
The boundary conditions of this problem include zero-stress at the free 
ground surface, and the continuity conditions at the interface [20] [21] 

between the valley and half space. These can be expressed as 
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yx
v
yy σττ  0== s

yx
s
yy ττ   at 0=y               (3.2) 

s
r

v
r uu =  sv uu θθ =  s

rr
vv

rr τστ =+   v
r

s
r θθ ττ =  at 11 ar =            (3.3) 

It is also necessary to add a hydraulic condition at the interface: 
  0=− v

r
v
r Uu  at 11 ar = (for impermeable interface) or 0=vσ  at 11 ar = (for permeable interface)     (3.4) 

where, the superscripts, s and v, indicate the half space and valley, respectively. 

3.3 Circular-arc layered valley with saturated soil deposits and water (problem 3)  

A cross-section of the two-dimensional model to be analyzed is shown in Fig. 3. The circular-arc layered valley 
with saturated soil deposits and water is embedded in an infinite half-space (y>0). The valley is bounded by a 
flat ground surface, and the shape of the circular-arc is characterized by its center, o1, radius, b2, depth, h2, and 
width, 2a2. The interface between water and saturated soil deposits is also circular-arc with center, o1, radius, b1, 
depth, h1, and width, 2a1 as shown in Fig. 3. The half- space is assumed as a single-phase, elastic, isotropic, and 
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homogenous solid, with its properties characterized by physical 
parameters, Lame constants, λ and µ , and mass density, ρ . The 
soil deposit is modeled as a saturated porous medium, and the 
water in the valleys is simulated by non-viscous perfect fluid. 
The wave equations of the perfect fluid was expressed by Wang 
[22] as follows 

f
uf

f
f K

t
u ⋅∇∇=

∂
∂

2

2

ρ                   (3.5) 

where ρf, Kf , and uf are the density, incompressible coefficient, 
and displacement of the fluid respectively. From Eqn. (3.5), it is 
seen that only P-waves exist in the non-viscous perfect fluid 
with the velocity of 

f

fK
ρ

. 

The boundary conditions of this problem include zero-stress at 
the free ground surface within the valley and the half space out of the valley, and the continuity conditions at the 
interface between the valley and half space, and between the saturated soil deposits and water. Assuming the 
ground surface within the valley to be pervious, the zero-stress boundary conditions can be expressed as  
                    0== s
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s
yy ττ  ， 0=== vv
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v
yy σττ ， 0=w

yyτ   at 0=y                            (3.6) 
where, the superscripts, s ,v, and w, indicate the half space, valley and water, respectively. 
If the interface between the valley and half space is permeable, the continuity conditions at the interface can be 
expressed as: 
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The continuity conditions at the interface between the saturated soil deposits and water are 
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3.4 Cylindrical cavity in a fluid-saturated porous medium half space (problem 4) 

Fig.4 shows the model of problem 4. The half-space is made of a fluid-saturated porous medium defined by the 
x-y coordinate system for y>0, and is uniform expect for the circular cylindrical section of radius a that is 
removed to form an unlined cavity. The cylinder is centered at a depth h below the half-space surface. 
The boundary conditions of this problem are the stress-free boundary conditions at the half space and cavity 
surface. It is obvious that there are two kinds of boundary conditions as problem 1, one is pervious boundary 
conditions which can be expressed as: 
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In the four questions, assuming the excitation in the half space to be a 
sinusoidal plane P or SV wave with circular frequency ω and incident 
angle of θα (for P wave) or θβ (for SV wave). The displacement and 
propagation vector are situated in the x-y plane. 

4. THE SOLUTIONS 

In this section, the solution of problem 3 for incident SV-wave will be 
taken for example to illustrate the methods for solution of scattering of 
plane waves by above mentioned four typical sites with saturated soil. 
The details of the other three problem solutions can be found in Ref. [15]. 
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4.1 Wave field analysis 

4.1.1 Free wave field 
By omitting the time factor exp(-iωt), the potential function of the incident SV wave, in the (x,y) coordinate 
system, can be expressed as  

)]cossin(exp[ 2
)(

ββ θθψ yxiks
i

s −=                                 (4.1) 
in which, ks2 is the longitudinal wave number. If there is no circular valley, the incident SV wave reflected from 
the half space will generate a reflected P as well as a SV wave to satisfy the stress-free boundary conditions. The 
reflected SV is plane wave, whereas the P wave may be either: (1) plane body waves, if incident angle is below 
the critical angle θcr (θβ<θcr), or (2) surface waves if θcr>θβ. The critical angle is θcr=sin(ks1/ks2). 
Case 1. Incident at or below critical angle (θβ<θcr). The reflected P wave and SV wave potential functions are 
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where, ks1 is the wave number and θα is the reflected angle of the P wave. The relationship between θα and θβ is 
ks1sinθα= ks2sinθβ. As1and As2 are the reflection coefficients. Eqns. (4.1) and (4.2) also can be expanded in terms 
of Fourier-Bessel series in the cylindrical coordinates (r1, θ1) as incident plane P-waves 
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Case 2. Incidence beyond critical angle(θβ>θcr). In this case, the reflected angle of the P wave, θα, becomes 
complex, and the reflect P-wave is an inhomogeneous (surface) wave. Then in the cylindrical coordinates (r1, θ1) 
�s

(r)
 can be written as  

[ ]1111111
)( sincosexp)exp(),( θθγγθφ ikrrdAr s

r
s +−=                   (4.5) 

Where γ= -ik1cosθα is a real value quantity and k=ks1sinθα=ks2sinθβ is the horizontal wave number of the incident 
and of the reflected waves. Now an expansion of the potential function in terms of Fourier�Bessel series as 
above in the full space would not be appropriate, since it is also exponentially increasing in the negative y-axis, 
and hence unbounded. Lee and Cao [8] in their paper on scattering of plane SV-waves from shallow circular 
canyons expanded the potential function of the reflected P wave along the surface of the canyon in finite Fourier 
series of θ1 with period 2π. Because the function that they approximated had jumps at θ1=θ0 and θ1=-θ0, the 
finite Fourier series and its derivatives could oscillate significantly about the exact function in the neighborhood 
of the boundary points. To overcome this disadvantage, in this paper a modified version of the method of Ref.[8] 
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introduced into the boundary conditions directly.  
4.1.2 Scattered wave field 
For convenient to introduce the boundary conditions, the large circle assumption introduced by Cao and Lee [13] is 
applied in this work. That is the half space boundary is approximated as a nearly flat circular boundary centered at o3 
with a radius R (Fig.3). It is now obvious that when the radius of the large circle approaches infinity this model 
approaches that of the circular-arc alluvial valley in the half space. 
Scattered waves in the half space 
In the half space, because of the presence of both the plane free boundary and the circular-arc layered valley, the 
incident SV wave and the reflected P and SV waves from the ground surface will be scattered and diffracted around 
the valley in the half space, and the scattered cylindrical waves from the valley will be reflected back into the half 
space from the plane free surface. These two sets of waves can be characterized by the following potential functions  
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Scattered waves in the saturated soil deposits  
In the saturated soil deposits of the valley, there are three sets of newly-generated waves because of the presence 
of stress-free ground surface, the interface between the half space and the circular-arc alluvial valley and the 
interface between the saturated soil deposits and water. According to Biot�s dynamic theory, there are three 
types of waves in each set, including two types of compressional waves, i.e. PⅠ and PⅡ waves, and one shear 
wave, i.e. SV wave. Their potential functions can be expressed as follows  
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where ka,1, ka,2and kβ are wave numbers of P�, P� and SV waves respectively which were defined in section 2.2.  
Scattered waves in the water 
In the layer of fluid medium, there are two sets of newly-generated waves because of the presence of stress-free 
ground surface, the interface between the saturated soil deposits and water. Their potential functions can be 
expressed as follows 
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where kw is the wave number of P-wave in the fluid medium。 

In Eqns. (4.8) - (4.14) { })1(
,2

)1(
,2 nwnw BA , { })3(

,3
)3(
,3 mwmw BA , { })1(

,2
)1(
,2

)1(
,2

)1(
,2 nsnsnsns DCBA , { })3(

,3
)3(
,3

)3(
,3

)3(
,3 msmsmsms DCBA , 



The 14
th  

World Conference on Earthquake Engineering 
October 12-17, 2008, Beijing, China 
 
 

{ })1(
,1

)1(
,1

)1(
,1

)1(
,1

)1(
,1

)1(
,1 nvnvnvnvnvnv FEDCBA , { })1(

,2
)1(
,2

)1(
,2

)1(
,2

)1(
,2

)1(
,2 nvnvnvnvnvnv FEDCBA , { })3(

,3
)3(
,3

)3(
,3

)3(
,3

)3(
,3

)3(
,3 mvmvmvmvmvmv FEDCBA , are 

the undetermined coefficients. 
The above mentioned potential functions are expressed in different cylindrical coordinates. To be convenient to 
solve the problem, it is need to perform coordinate transformations. According to the Graf�s addition formula[23]. 
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where Cn(●) represents Jn(●) or H(1)
n(●), and D is the distance between 1o and 3o . The wave potential functions 

Eqns. (4.8) - (4.14) can be expressed using the other corresponding cylindrical coordinate. 
4.1.3 The total wave field 
The total wave potential functions in the half-space are 
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s ψψψψ ++= +                                (4.16) 
The total wave potential functions in the saturated soil deposits and water are in the same expressions. In the 
saturated soil deposits, the potential functions associated with the solid phase 

3,23,12,22,11,21,1 vvvvvvv φφφφφφφ +++++= , 321 vvvv ψψψψ ++=                      (4.17) 
The potential functions associated with the fluid phase  

][][ 3,22,21,223,12,11,11 vvvvvvv φφφηφφφη +++++=Φ , )( 3213 vvvv ψψψη ++=Ψ               (4.18) 
where 1η , 2η and 3η have been defined before. 
The potential function in the layer of fluid medium: 32 www φφφ +=                                  (4.19) 

4.2 Solution of the problem 

It is seen that the total wave field must satisfy the boundary conditions of the problem, i.e. Eqns. (3.6)-(3.8). The 
boundary conditions are present in the forms of displacement and stress, so it is important to get the 
potential-displacement-stress relations firstly.  
According to Eqns. (2.2) and Eq. (2.3), these relations of fluid-saturated porous medium for the plane strain 
problem based on cylindrical coordinates can be obtained as following  
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The relations of single-phase solid medium for the plane strain problem based on cylindrical coordinates were 
obtained by Pao and Mow [24]. 
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The relations of the fluid medium can be written as 
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Substituting the potential functions of the total wave field into Eqns. (4.20)-(4.22) and applying the boundary 
conditions (3.6)- (3.8), a set of equations in terms of the undetermined coefficients in Eqns. (4.8) - (4.14) can be 
got. It should be pointed out that the above equations are all in infinite sum, therefore, the system of equations 
must be solved by truncating the infinite terms into finite terms. The number of terms included in the calculation 
must be large enough to reach the required accuracy and is generally dependent on the input frequency, ω, the 

(4.20)

(4.21)
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radius of the valley, b2, and the shear wave velocity of the incidence wave. The dimensionless frequency is 

defined as 
πλ

η akb 2

2

22 ==  (where 2λ  and 2k  are the shear wavelength and wave number of the incident wave, 

respectively). The number of terms included in the calculation is increase with the value of the dimensionless 
frequency, η , and is as high as 36 for η =2 to this problem. 

5. STUDY ON THE INFLUENCE FACTORS OF THE EARTHQUAKE GROUND MOTIONS OF 
LOCAL SITES WITH SATURATED SOIL  

From the point of view of earthquake engineering and strong motion seismology, an important aspect of above 
analysis is the description of displacement amplitudes at various points along the surface of the site. Once the 
wave potential functions have been determined, the displacement vector can be obtained easily. In this paper, the 
influence factors of the earthquake ground motions of cylindrical canyons in saturated porous medium and 
circular-arc alluvial valleys with saturated soil deposits are mainly studied. 
For cylindrical canyons in saturated porous medium 
(1) The complexity of the surface displacement amplitudes, caused by the presence of the circular cylindrical 
canyon, increases with increasing frequency, η. At low frequencies, the incidence waves have long wavelengths, 
when compared with the radius of the canyon, a1, the long waves do not �feel� the short topographic irregularities. 
As the frequency increases, the complexity of the surface displacement amplitudes of the solid phase increases on 
the side of the half space facing the incoming waves(x/a<-1), and becomes relatively smoother on the other 
side(x/a>1). But either or both of the horizontal and vertical components of displacement on the side of x/a>1 are 
not smaller, and can even be larger than those in front of the canyon on the side x/a<-1. For incident SV-wave, the 
horizontal components of displacement on the side of x/a<-1 increase dramatically when incidence beyond critical 
angle, and the surface displacement amplitudes at the point x/a=-1 seriously fluctuates. 
(2) In general, the surface displacement amplitudes under the impervious conditions are larger than that under 
the pervious conditions. 
(3) The relative stiffness of the solid skeleton, µ/Kf, has great influence on the surface displacement. The effects of 
variations in Poisson�s ratio are significant for the solid-dominated case (i.e. large µ/Kf ratio), especially when the 
frequency is low, and diminish with decreasing solid stiffness. When the µ/Kf  is smaller, the surface displacement 
amplitudes may be very large. Under the same conditions, the amplification of the surface displacements, due to the 
cylindrical canyons in soft saturated soil(i.e. small µ/Kf ratio), is much larger by assuming the soil as a saturated 
porous medium than an elastic single-phase elastic medium, especially when the boundary is impervious. So, for soft 
soil, big error may occur when the soil assumed as elastic single-phase elastic medium. 
(4) The cases that the degree of saturation, Sr, is sufficiently high (e.g. higher than 90%) so that the air is 
embedded in pore water in the form of bubbles [25] are considered in this study. For this special case, the concept 
of homogeneous pore fluid could be applied to the theory of two-phase porous media as described in Ref. [26]. 
The result shows that, the surface displacements of the canyons may show evident changes, when the degree of 
saturation has a very small change compared with the complete saturation. But for the condition of Sr<100%, the 
degree of saturation has little influence on the surface displacement. 
For circular-arc alluvial valleys with saturated soil deposits 
(1)The valleys with saturated soil deposits have strong amplifying action to the surface displacements. And the 
amplification of the surface displacements within the valley, is much larger than that outside the valley. The 
valleys with saturated soil deposits also have the stronger filtering action. Regarding the fixed location, the 
filtering action caused by the valleys adds with increasing of the frequency of the incident waves. The surface 
displacements of valleys depend strongly on the frequency, angle of incidence, and its position. 
(2) In general, the amplification of the surface displacements by the presence of the deep alluvial valleys are 
larger than shallow valleys. But the amplification of the surface displacements by the presence of the shallow 
alluvial valleys can not be neglected. In some conditions, the surface displacements of a few points in the 
shallow alluvial valleys may be relatively large. 
(3) When the deposits is soft (i.e. the relative stiffness of the solid skeleton of the deposits, µ/Kf , is small), the 
surface displacement amplitudes may very large and change greatly. But the effects of µ/Kf on the surface 
displacement amplitudes are very complex, so one can not say that the surface displacement amplitudes 
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increases with decreasing µ/Kf. 
(4) In a wide frequency band, the surface displacement amplitudes under the impervious conditions are larger 
than that under the pervious conditions. And the range of the frequency band is related to the incident angle. 
(5) The amplification of the surface displacements, due to the circular-arc alluvial valleys with the soil deposit 
being assumed as a saturated porous medium is quite different from that due to the valleys with the soil deposit 
being assumed as an elastic single-phase elastic medium. And in some case, the amplification of the surface 
displacements, due to the valleys in saturated soil, is much larger by assuming the soil as a saturated porous 
medium than an elastic single-phase elastic medium, especially when the boundary is impervious. 

6. CONCLUSION  

This paper presents a series of analytical solutions for scattering of plane P and SV waves by several typical 
sites with saturated soil, which include: (1) cylindrical canyons in saturated porous medium; (2) alluvial valleys 
with saturated soil deposits; (3) circular-arc layered valleys consisting of the interaction between water and 
saturated soil deposits; (4) cylindrical cavity in a fluid-saturated porous media half space. Based on these 
solutions, the earthquake ground motions of cylindrical canyons in saturated porous medium and circular-arc 
alluvial valleys with saturated soil deposits are mainly studied. From the studies, one can find that the ground 
motions of the saturated soil local irregular site not only depend on the topography of the local site (such as the 
depth-to-width ratio of canyons or valleys) and the characteristic of the incident waves (i.e. the frequency and 
the angle of incidence), but also depend on the material characteristic of the soil and the boundary conditions. At 
the same time, the soft saturated soil site can be simulated by elastic one-phase solid model or by fluid-saturated 
porous media model, but the results of the ground motion by the two models were great different. 
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