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ABSTRACT : 

This work presents a simplified procedure for the evaluation of the kinematic stress resultants in single piles 
subjected to earthquake soil displacements. The procedure is applicable to single piles embedded in
homogeneous as well as horizontally layered soil profiles overlaying a rigid formation. By neglecting radiation
damping the evaluation of the effects induced in the piles by the propagation of seismic waves in the soil is
studied by means of a static equivalent procedure, without the use of dynamic analyses. Piles are modelled as
elastic beams on Winkler restraints and are pushed by the earthquake soil displacements provided by a response 
spectrum analysis of the soil profile oscillating. The soil is assumed to be homogeneous with constant shear 
modulus and density and to behave elastically. A validation of the method is carried out comparing results with 
those furnished by more sophisticated dynamic soil-pile interaction analyses. 
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1. INTRODUCTION  
 
Pile failures, as consequence of seismic events, have been observed after earthquake. When liquefaction 
problems may be excluded, the damages may be generally associated to two main causes: the first is related to
the inertial interaction between the soil-foundation system and the superstructure while the second is due to the 
kinematic interaction between the soil and the foundation system and concerns the actions induced in the piles
by the propagation of the seismic waves in the soil. Damages induced by kinematic interaction localize mainly 
at the interface between layers with high impedance contrast. Modern seismic codes have acknowledged these
aspects and prescribe the kinematic interaction effects to be taken into account in the foundation design process. 
Many authors during the years have proposed simplified procedures and analytical solutions for the evaluation
of the kinematic bending moments along the piles and at the interface between layers characterized by different
shear moduli. By assuming that long piles follow the deformation of the soil, in 1975 Margason suggested to
compute kinematic pile bending moments starting from the evaluation of the free-field soil curvatures by means 
of a finite difference approach and without accounting for soil-pile interaction and radiation damping. In 1983 
Dobry & O’Rourke presented a simple model for the evaluation of the kinematic bending moment at the
interface between two soil layers by modelling the pile as a beam resting on Winkler foundation. Assuming
simplified strains distribution within the layers and postulating that the pile is long with respect to the thickness
of the two layers, they developed a solution for the pile bending moment at the interface as function of the
Winkler parameter, the soil strain at the interface and the ratio between the shear moduli of the two layers. The
procedure proposed by Dobry & O’Rourke allows accounting for soil-pile interaction but requires the 
computation of a free-field one-dimensional site analysis for the evaluation of the soil strain at the interface. In 
2005 Dente proposed an alternative expression for the evaluation of the shear strain at the interface as function
of the maximum acceleration at the free-field ground surface and the dynamic properties of the surface layer.
Nikolaou et al. (1995-1997) have performed a parametric investigation on the bending strains in a pile
embedded in a two layered soil deposit subjected to harmonic steady-state shear waves. By assuming the pile 
length to be greater than the active pile length (Randolph, 1981; Velez et al., 1983) they derived a closed-form 
expression for the evaluation of the maximum bending moment at the interface. Furthermore Nikolaou et al. 
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(2001) have performed a series of analyses using real accelerograms and real soil profiles in order to find a 
correlation between the steady-state and a real transitory response. 
A simplified procedure for the evaluation of stress resultants in single piles subjected to earthquake soil
displacements has been developed in this work. The procedure allows obtaining not only the peak bending 
moment at the interface between soil layers with impedance contrast but also the complete distribution of the
stress resultants along the pile. The evaluation of the effects induced in the piles by the propagation of seismic 
waves in the soil is studied by means of a static equivalent procedure can be easy implemented in commercial 
finite element computer codes for structural analysis or simple spreadsheets. 
 
 
2. PROPOSED METHOD 
 
A single pile embedded in a layered soil is considered. Under the simplifying assumption that the soil deposit 
motion due to the seismic excitation is not influenced by the presence of the foundation, the pile stress 
resultants due to kinematic interaction are evaluated by assuming the pile as an elastic beam resting on a 
Winkler foundation subjected to the earthquake soil displacements evaluated by means of a dynamic response
spectrum analysis of the soil deposit. 
 
2.1. Free-field displacement profile 
In this section a procedure for the evaluation of the free-field displacement profile is presented with reference to 
a generic soil deposit overlying a rigid bedrock and constituted by n homogeneous horizontal layers of 
thickness hj (Figure 1). The soil is assumed to behave as a linear elastic shear deformable column with constant 
elastic modulus and density within each layer and the bedrock is subjected to a seismic motion. By considering 
a reference system frame {0; zj} for each layer as in Figure 1 the equation of motion for the column is 
 
 ( ) ( ) ( )tutzuGtzu bjjsjjsj ρ−=′′−ρ ,,    for j = 1, … n (2.1) 
 
with the relevant boundary and continuity conditions  
 
 ( ) 0,1 =′ tzus     for z1 = 0 (2.2a) 
 ( ) ( )tzutzu jsjs ,, 1+=     for j = 1, … n-1, zj = hj and zj+1 = 0 (2.2b) 

 ( ) ( )tzuGtzuG jsjjsj ,, 11 ++ ′=′    for j = 1, … n-1, zj = hj and zj+1 = 0 (2.2c) 

 ( ) 0, =tzu ns     for zn = hn (2.2d)  

  
where Gj and ρj are the elastic modulus and density of the j-th soil layer, respectively. In Eqn. 2.1 us(zj,t) 
denotes the horizontal relative soil displacement while ub(t) is the soil displacement at the bedrock level. 
Assuming that the associated eigenvalue problem have been solved, the soil displacement may be expressed by
a linear combination of the modes as 

 ( ) ( ) ( )∑
∞

=

=
1

,
r

rjrjs tqzUtzu   for j = 1, … n (2.3) 

 
where the r-th term of the series is the contribution of the r-th mode of vibration to the response. Soil 
displacements expressed by means of Eqn. 2.3 satisfy boundary and continuity conditions (2.2). Substituting 
Eqn. 2.3 into Eqn. 2.1 yields  
 

 ( ) ( ) ( ) ( ) ( )tutqzUGtqzU bj
r

rjrj
r

rjrj ρ−=′′+ρ ∑∑
∞

=

∞

= 11
  for j = 1, … n (2.4) 

 
Furthermore, by multiplying each term by Um, integrating over the length of the soil column and by considering 
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the orthogonality properties of the modes, Eqn. 2.4 transforms into 
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Figure 1. Horizontally layered soil profile overlying a rigid formation and pile subjected to the free-field  soil 
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In Eqns. 2.6 ωm is the natural frequency and Γm is the modal participation factor associated to the m-th mode of 
vibration while Mm and Km in Eqns. 2.7 are the generalized mass and stiffness for the m-th mode of vibration, 
respectively. It is worth noticing that Eqn. 2.5 is the well known equation of motion for a SDF system. For 
classically damped system Eqn. 2.5 transforms into 
 
 ( ) ( ) ( ) ( )tutqtqtq bmmmmmmm Γ−=ω+ωξ+ 22  (2.8) 
 
where  ξm is the damping ratio of the m-th mode. Solution of Eqn. 2.8 assumes the form 
 
 ( ) ( )tDtq mmm Γ=  (2.9) 
 
where Dm(t) is the response of the m-th SDF system. The peack soil displacement for the m-th vibration mode 
can be directly computed through the earthquake response spectrum by means of the expression 
 

 ( ) ( ) ( )jm
m

mma
mjmff zUSzu 2,

,
ω

ξω
Γ=   (2.10) 

 
where uff,m(z) is the maximum free-field displacement and Sa(ωm, ξm) is the ordinate of the earthquake 
pseudo-acceleration response spectrum associated to the modal damping ratio ξm and corresponding to the 
vibration frequency ωm.  
The damping ratio ξm represents the damping of the soil that is generally dependent on the strain level to which 
the ground is subjected. A constant value for the modal damping ratio, associated to the m-th mode of the soil 
profile, may be determined to represent the material hysteretic damping of the whole system. If energy 
dissipation occurs differently in each layer a weighted value of the damping ratio may be determined by
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empirical approaches. For systems where the energy dissipation mainly develops from the hysteretic behaviours
of its components it can be assumed that the modal damping ratio is proportional to the strain energy stored in 
the system. The modal damping ratio may be obtained from the weighted sum of the damping of each soil layer
constituting the system with the weight being the normalized elastic energy stored in each layer for a deformed 
shape corresponding to the m-th mode. Modal damping ratio corresponding to the generic m-th mode may thus 
be computed as follows: 
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 (2.11) 

 
where ξm,j is the damping ratio of the j-th soil layer for the m-th mode.  
The procedure needs the evaluation of the natural frequencies and modes of the layered soil profile in order to
expressed the soil displacement according to Eqn. 2.3. The eigenvalue problem associated to Eqn. 2.1 can be 
easily solved separating variables z and t for the definition of the horizontal displacement us(zj,t) as follows: 
 
  ( ) ( ) ti

jjs ezUtzu ω=,  (2.12) 
 
where Uj(z) is the modal displacement function and ω is the circular natural frequency. The general solution of 
the problem assumes the form 
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where  

 
j

j
js

G
V

ρ
=  (2.14) 

 
is the shear wave velocity within the j-th soil layer and Aj and Bj are the integration constants depending on the 
conditions at the boundaries of each layer. Introducing the boundary conditions together with the continuity
conditions at the interface the following system of 2n homogeneous equations in the constants Aj and Bj can be 
obtained 
 ( ) 0xH =ω   (2.15) 
 
where H is the matrix of the system coefficients and x is the vector grouping the integration constants Ai and Bi,
respectively. The natural frequencies of the system can finally be computed from equation 
 
 ( )[ ] 0det =ωH   (2.16) 
 
2.2. Effects of the kinematic interaction for the single mode 
The pile is assumed to be a Euler-Bernoulli beam with flexural rigidity EI resting on a Winkler-type medium
embedded into p soil layers with 1 ≤ p ≤ n as in Figure 1. Coefficients of distributed springs are given by the 
following expression, according to the formulations proposed by Makris and Gazetas (1992): 
 
 ( )jjjj Vsk ν+= 1ρ4.2 2  (2.17) 
 
where νj is the Poisson’s ratio of the j-th soil layer. By considering a constant flexural rigidity for the pile, the
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equilibrium condition of a generic pile element subjected to the soil displacement may be written in the form 
 

 
( ) ( ) ( )[ ] 0,4

4

=−+ jmffjmj
j

jm zuzuk
dz

zud
EI  (2.18) 

 
where um(zj) is the pile displacement. Solution of Eqn. 2.18 is achieved by standard mathematics. Taking Eqn. 
2.10 into account, the procedure allows obtaining the following general expression for the displacement 
 

 

( ) ( ) ( )

( )jjjjjj
jj

jm

jjjjjj
z

jjjjjj
z

jm

zsenBzA
S

                               

zsenCzCezsenCzCezu jj

β+β
α+β

α

+α+α+α+α= αα−

cos
4

4

coscos

44

4

,4,3,2,1

 (2.19) 

where 
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By substituting the boundary conditions at the pile head and at the pile base, and the continuity conditions at the 
interface between the soil layers a system of 4p homogeneous equations in the constants C1,j, C2,j, C3,j, C4,j may 
be obtained. The solution of the system allows calculating the displacements of the pile sections and 
consequently the stress resultants at each depth of interest for each mode of the free-field motion.   
If the pile is embedded into the bedrock formation the supports of the springs relevant to the pile sections below
the bedrock location are subjected to a null prescribed motion. The equilibrium condition for the generic pile
element below the bedrock surface is expressed by Eqn. 2.18 where uff,m(zj) is made zero and the general 
solution is that of the homogeneous problem. Alternatively the problem may be solved by considering a fixed 
restraint for the pile at the bedrock level; this leads to a conservative evaluation of the pile stress resultants that 
may be accepted for design purposes.  
 
2.3. Final Remarks 
Since the response to earthquake is primarily due to the lower modes of vibration only the first few natural 
frequencies and modal shapes have to be evaluated and applied to the piles to compute the kinematic response
with a good level of precision. When higher modes have to be considered the effects need to be combined with
the modal Complete Quadratic Combination. It is worth noticing that the evaluation of the free-field 
displacement profile and the pile response pushed by the free-field soil displacement may both be achieved by 
means of standard structural analysis finite element codes or simple spreadsheets. 
 
 
3. VALIDATION OF THE METHOD 
 
A validation of the proposed method of analysis is presented comparing results with those obtained by dynamic
soil-pile kinematic interaction analyses. Single piles of two diameters are considered together with two different 
soil profiles. The model proposed by Dezi et al. (2007) is used for the evaluation of the kinematic interaction of
the selected case studies taking into account the soil-pile interaction and the radiation damping. The concrete 
piles have a Young modulus of 3⋅107 kPa and a density ρp of 2.5 Mg/m³. They are characterized by a length of
24 m and by a circular cross section of diameter d equal to 600 and 800 mm. 
The seismic action defined at the outcropping bedrock consists of an artificial accelerogram matching the EC8
Type 1 elastic response spectrum for ground type A. For each investigated soil profile the acceleration time
history at the bedrock level is obtained by linearly deconvoluting the artificial accelerogram at the bedrock level
by means of a one-dimensional local site response analysis. A constant soil Poisson’s ratio ν = 0.4 and a 
constant material hysteretic damping ξ = 10%, compatible with the strain level in the soil, are considered for all
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the case studies. The bedrock formation is characterized by a shear wave velocity of Vsb = 800 m/s and a 
density of ρb = 2.5 Mg/m³.  
 
3.1 Single layered soil 
A soil profile constituted by a single horizontal soil layer overlying a rigid formation is firstly analysed. The
dynamic properties of the soil are reported in Figure 2a with the accelerogram at the bedrock level and the 
corresponding earthquake response spectrum. Only the contribution of the first vibration mode of the soil is
considered; the modal response parameters of the soil column and the maximum soil displacement profile,
computed as in Eqn. 2.10, are shown in Figure 2b. When subjected to the soil displacement profile, both piles 
undergo similar displacements that are shown in Figure 2c. Figure 3a-b show comparisons between the results 
obtained from the proposed method and those derived by the dynamic analyses performed according to the 
procedure developed by the authors. Results are presented in term of bending moment and shear force along the 
piles; the maximum absolute values of the stress resultants descending from the dynamic analyses have been 
mirrored with respect to the pile axis in order to make comparisons with the static case easier. Results obtained
from the simplified procedure agree very well with those achieved through the dynamic analyses. 
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3.2 Multiple layered soil 
A soil profile constituted by three horizontal soil layers, having properties as in Figure 4a and overlying a rigid 
bedrock is also investigated. The accelerogram and the relevant response spectrum at the bedrock level is 
presented in the same figure. The first three modes have been considered for a total effective modal mass equal 
to the 86% of the total. The contributions of each mode to the pile response are independently evaluated and 
then combined. The modal response parameters of the soil column are shown in Table 3.1.  
 

Table 3.1 Modal response parameters 
Mode T [s] Γ Μ [%] 
1 0.44 1.50 46 
2 0.20 0.16 28 
3 0.12 0.17 12 
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Figure 4b shows the soil displacement obtained from Eqn. 2.10 while in Figure 4c the deformed shapes of the 
piles are presented. Figure 5a-b shows comparisons between the results obtained by the use of the proposed 
simplified method and that obtained by the dynamic analyses. The effects induced by the contribution of only 
the first mode and the modal Complete Quadratic Combinations of the effects produced by the first two and 
three modes are presented.  
As expected, by increasing the number of mode contributing to the response the stress resultants obtained from 
the dynamic analyses are reproduced closer even if in this case the simplified method underestimate the actual 
stress resultants obtained from the dynamic soil-pile interaction analyses of about 20%. 

 
4. CONCLUSIONS  
 
In this paper a simplified method for the evaluation of kinematic bending moments in single piles has been
presented. The method descends from the assumption that during a seismic excitation the motion of the soil is
not influenced by that of the pile. The soil is considered to behave as a shear deformable column and the 
maximum free-field displacement profile in the soil is computed by means of a response spectrum analysis. The
pile is modelled as a Euler-Bernoulli beam resting on a Winkler foundation and is subjected to the free-field soil 
displacements. The following conclusions may be drawn: 

• the potential of the method is demonstrated by comparing results in terms of kinematic stress resultants
along the piles with those achieved by complex dynamic soil-pile interaction analysis; 

• only the contributions of few modes need to be considered for a good estimation of the kinematic effects in
the piles; 

• the method furnishes a practical tool for the evaluation of the kinematic bending moments and shear force
in piles to structural and geotechnical engineers;  

• commercial finite element computer codes for structural analysis or simple spreadsheets may be used for 
the computation of the input soil displacements and for the analysis of the pile response. 
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