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ABSTRACT : 

This paper presents a new method that may achieve a more accurate and lower cost estimation of elastic
properties and thicknesses of soil deposits. The kernel of the proposed method, being independent of the usually 
adopted assumption that only one Rayleigh wave mode is dominant, is to use the near field characteristics of all 
types of P-SV wave motions on the surface of elastic multi-layered half space generated by the vertical 
harmonic load applied on its surface. The near field wave motions are accurately simulated by the stiffness 
matrix method as one of more powerful numerical solutions, and then the following two physical quantities,
which can be observable in the field, are used in inversion analysis: (1) the predominant frequency for which 
the dynamic vertical displacement on the soil surface takes a maximum value, and (2) the frequency variation
of the phase velocity at a point on the soil surface near the vertical harmonic load. The phase velocity used in
the proposed method is a local quantity varying with the location from the vertical load, because of using all 
types of waves and their modes. To demonstrate the capability and reliability of the proposed method, the 
numerical examples are presented by using regular and irregular soil profiles. 

KEYWORDS: estimation of layered soil deposit, vertical harmonic load, elastic wave 
propagation, phase velocity, non destructive testing, Rayleigh wave, SASW 

1. INTRODUCTION 
 
Elastic waves generated by dynamic load applied on the soil surface provide the low cost methods to determine
the elastic properties and thicknesses of soil deposits. A number of methods, like the spectral analysis of surface 
waves (SASW), have been used in practice for these purposes.  
 
The SASW (for example, Heisey et al., 1982, Nazarian et al., 1984) is a variation of the Rayleigh wave method 
(Fry, 1963) developed originally to determine the elastic properties of soil deposits, and their variation with 
depth, for very low levels of strain. The original Rayleigh wave method uses the harmonic load, while the 
SASW is based on the spectral analysis of the transient time histories of vertical wave motions observed at the
two or more multi-receivers on the soil surface generated by the vertical transient impulse with a duration
depending on the range of frequencies of interest also applied on the soil surface. From the phase difference
between the receivers which are obtained as a function of frequency and interval distance of these receivers, a
plot of the phase velocity versus frequency or wavelength can then be obtained which provides the dispersion
curves of the Rayleigh wave. The common key assumption in the SASW and the Rayleigh wave method is that
the phase velocity versus frequency obtained from the records is interpreted as a dispersion curve of the 
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Rayleigh wave corresponding to only one dominant mode. This assumption leads to such some conditions that 
the records of the receivers at long distant locations from the source at least about dx (dx =interval distance of 
receivers) should be used and also a filtering criterion ( / 3 2R RL dx L< < : RL =Rayleigh wavelength) should 
be applied for dx of receivers to obtain the dispersion curve (Heisey et al., 1982). These conditions restrict the 
accuracy of dispersion curve especially in the low frequency range and hence they lead to the inaccurate 
estimation of deeper soil layers. 
 
This paper presents an alternative method which is independent of the usually adopted assumption that only one
Rayleigh wave mode is dominant. This method uses the near field characteristics of all types of P-SV wave
motions on the surface of elastic multi-layered half space generated by the vertical harmonic load applied on its
surface. The near field wave motions are accurately simulated by the stiffness matrix method (Kausel et al., 
1981, Harada et al., 1995, 2005) as one of more powerful numerical solutions, and then the following two
physical quantities, which can be observable in the field, are used in inversion analysis: (1) the predominant 
frequency for which the dynamic vertical displacement on the soil surface takes a maximum value, and (2) the
frequency variation of the phase velocity at a point on the soil surface near the vertical harmonic load. It is 
noted here that the proposed method does not use the filtering criterion such as that suggested by, for example, 
Heisey et al., (1982), but uses the frequency varying phase velocity closer to the point of harmonic load that can 
be directly observed from the phase difference of the receivers, because the near field effects and all wave
modes are taken into consideration in the proposed simulation. The observed frequency varying phase velocity
is interpreted in this paper as a local quantity varying with the location from the vertical load. It should be 
acknowledged that the advanced development of the computer simulation methods of the full wave motions
makes it possible to develop a Rayleigh wave free method of estimation of soil properties and their variation 
with depth. 

2. BRIEF DESCRIPTION OF NUMERICAL ANALYSIS OF WAVE FIELD BASED ON STIFFNESS 
MATRIX METHOD 

 
Stiffness matrix method was originally developed by Kausel et al., (1981) and are extended to the simulation of 
seismic wave motions due to the kinematical fault rupture model in the multi-layered half space by Harada et
al., (1999, 2005). In this chapter, a brief description of the stiffness matrix method in a Cartesian coordinate
system, which is used in the simulation of full wave motions and the estimation of the soil properties and their 
variation with depth, is presented here (Harada et al., 1999, 2005). 
 
In a Cartesian coordinate system( , , )x y z , the displacement vector ( , , , ) ( , , )Tx y z t u v w=u  at timet is retrieved 
by the three hold Fourier transform as follows,  
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where ( ), , ,x y zκ κ ωu  is the wave motion displacement vector at depth z  in frequency ω and wave 
number ( , )x yκ κ domain. The displacement vector ( ), , ,x y zκ κ ωu can be obtained from the SH wave 
displacement 0( , , )v zκ ω  and the P-SV wave displacements 0 0( , , ), ( , , )u z w zκ ω κ ω  such as, 
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where 2 2

x yκ κ κ= + stands for the wave number in the direction of wave (SH and P-SV waves) propagation. 
The SH wave displacement 0( , , )v zκ ω  and the P-SV wave displacements 0 0( , , ), ( , , )u z w zκ ω κ ω  are obtained 
by solving the following stiffness matrix equation (linear simultaneous equation), for example, for a three 
layered half space with an earthquake fault rupture in the 2nd layer, 
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in which 0 0( ) ( , , )z zκ ω≡u u for simplicity of notions, and ( ),nij HalfK K represent the stiffness matrix of the n-th 
layer and the half space, respectively. And also 0( ), ( )n s nz zq q stand for the external forces and the earthquake 
fault rupture based forces in unit area on depth nz in frequency wave number domain. 
 
 
3. CHARACTERISTICS OF P-SV FULL WAVE FIELD ON SOIL SURFACE DUE TO VERTICAL 

HARMONIC LOAD ON SOIL SURFACE 
 
3.1. Definition of Vertical Amplitude and Phase Velocity on Soil Surface 
The Eqns. 2.1 to 2.3 can be used to simulate the 3-dimensional wave motions for the case not only of external
excitation but also earthquake fault rupture excitation (Harada et al., 1999, 2005). For simplicity in this paper,
the 2 dimensional P-SV wave motions due to a vertical harmonic load with amplitude 0q on the center of the soil 
surface are simulated and their characteristics are described in terms of the vertical displacement amplitude
| ( , ) |w x ω and the phase velocity ( , )c x ω on the soil surface ( 0 0z = ) as a function of the excitation frequency 
and the distance from the load. 
 
In this case (the simulation of the 2 dimensional P-SV wave motions), the right hand external forces in Eqn. 2.3 
are given by, 
 

( )

( ) ( ) ( ) ( ) ( )

0 0 0

1 2 3 1 2

(0, ( ))

s s

z iq

z z z z z

δ ω ω= −

= = = = = 0
0

0 0 0

           q
q q q q q

                        (3.1)

 
where δ is a delta function, and 0ω is the excitation frequency of the vertical harmonic load. 
 
The vertical displacement on soil surface is obtained from the P-SV wave stiffness matrix equation (Eqn. 2.3) 
and its Fourier transform with respect to the wave numberκ as, 
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where ' '
0( , ) ( , ),w x t w x t x x≡ ≡  ( 'x =the axis of P-SV wave propagation) for simplicity of notations. The 

vertical displacement ( , )w x ω  inx ω− domain in Eqn. 3.2 can be expressed as 
 

[ ] [ ] ( , )( , ) ( , ) ( , ) | ( , ) | ei xw x R w x iI w x w x θ ωω ω ω ω= + =                         (3.3)
 

where,  



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

 
( ) ( )[ ] ( )[ ]

( )
( )[ ]
( )[ ]

2 2

1

, , ,

,, tan
,

w x R w x I w x

I w xx
R w x

ω ω ω

ωθ ω
ω

−

= +

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
                                    (3.4)

 
Then substituting Eqn. 3.3 into Eqn. 3.2, ( , )w x t can be expressed as 
 

                    ( ) ( )
( ),

, ,
xi t

0w x t q w x e
θ ωω

ωω
⎡ ⎤− −⎢ ⎥
⎣ ⎦=                                     (3.5)

 
The phase velocity, ( , ) /c x dx dtω = , can be obtained by differentiating the phase, ( , ) constantt xω θ ω− =
with respect to timet in Eqn. 3.5 such as, 
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3.2. Numerical Example of Characteristics of Vertical Amplitude and Phase Velocity on Soil Surface 
For the numerical example of the characteristics of vertical amplitude and phase velocity on soil surface, a 
single soil layer on half space as shown in Figure 1 is used. In Figure 1,H =thickness of soil layer,ρ =soil mass,
,p sV V =P wave and S wave velocities, respectively, and Q =Q value representing material damping of soil. 

 
 

 

z0

Half Space

qw (t) = q0e
-iwt

x0

Free Surface

H=6.096m ρ= 1700 kg/m3 Vp =264m/sec Vs =152m/sec Q = 25
z1

ρ= 2000 kg/m3 Vp =528m/sec Vs =304m/sec Q = 50

 
 
           Figure 1 A single soil layered half space subjected to a harmonic load with amplitude 0q  

on its surface used in numerical example 
 
Figure 2 shows the vertical displacement amplitude| ( , ) |w x ω as a function of distancex ( 0 100x m< < ) from 
the vertical load and the frequency /2f ω π= ( 0 100f Hz< < ). In this figure the value of

0| ( , ) | /( / )w x qω μ , where μ=shear modulus of single soil layer, is plotted in terms of a bird’s-eye-view (a) and 
a contour curve map (b) of 0| ( , ) | /( / )w x qω μ . 
 
From Figure 2 a predominant peak of the vertical displacement amplitude is observed at a frequency around 10 
Hz, but its amplitude and frequency vary with the distancex from the point of vertical harmonic load. To see 
the amplitude and frequency variation of 0| ( , ) | /( / )w x qω μ  in detail, Figure 3 indicates 0| ( , ) | /( / )w x qω μ
at the 3 points of distance 5 ,10 ,20x m m m= . The frequency for which the predominant peak appears
in 0| ( , ) | /( / )w x qω μ  may be interpreted as the predominant frequency of the soil deposit, but the predominant
frequency is slightly varying with the distancex from the load. In this sense the predominant frequency
observed in the near field closer to the load is interpreted as a local quantity. 

0( )w

i tq t q e ω−=
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                        (a)                                          (b) 

Figure 2 Normalized vertical displacement amplitude 0| ( , ) | /( / )( )w x q mω μ  in terms of  
a bird’s-eye-view (a) and a contour curve map (b) 
 
 
 
 
 
 
 
 

 
 
 

(a)                           (b)                           (c) 
Figure 3 Normalized vertical displacement amplitudes 0| ( , ) | /( / )( )w x q mω μ  at 5 ,10 ,20x m m m=  

 
Figure 4 shows the phase velocity of ( , )c x ω on the soil surface similarly in terms of a bird’s-eye-view (a) and a 
contour curve map (b) in the range of ( 0 50 , 0 50x m f Hz< < < < ). From this figure, the phase velocity 
exhibits the wavy forms inx f− domain. The variation of the wavy forms is depending on the distance as well
as the frequency. The frequency variation of the phase velocity is known as the dispersion curves of Rayleigh 
wave but in which they are a function of only the frequency and being independent of the distance. It is noted
here that the phase velocity versus frequency of the Rayleigh wave at a point far away from the load exhibits 
also a wavy variation with only the frequency due to the superposition of all modes of Rayleigh wave. Being 
similar to the vertical displacement amplitude 0| ( , ) | /( / )w x qω μ , also the phase velocity ( , )c x ω is called as 
the local quantity which varies with both the distance and the frequency. To see more clearly the frequency and 
distance variation of ( , )c x ω and its relation to the dispersion curves of Rayleigh wave, the phase velocity at the 
3 points of distance 5 ,10 ,20x m m m=  and the dispersion curves of the 1st , 2nd , and 3rd modes of the Rayleigh 
wave are plotted in Figure 5. It is found from Figure 5 that ( , )c x ω  never coincides with the dispersion curves 
of Rayleigh wave, especially in the case of the closer distance of the case (a) 5x m= , and also in the lower 
frequency range below the approximate predominant frequency even in the cases (b) and (c). It is noted here 
that a usually used filtering criterion such as that suggested by Heisey et al., (1982) can be interpreted as a filter 
device to obtain an approximation of the dispersion curve varying with only the frequency for the predominant 
mode (usually 1st mode) of Rayleigh wave from the observed phase velocity that is a local quantity exhibiting a 
variation with the frequency as well as the distance. It should be noted here also that the predominant mode of
Rayleigh wave is depending on the soil profiles where the 1st mode may be dominated for the regular soil 
deposits while the higher modes may become significant for the irregular soil deposits. Therefore the usually 
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used filtering criterion restricts the accuracy of dispersion curve of a irregular soil deposit and also especially in 
the low frequency range and hence it leads to the inaccurate estimation of deeper soil layers. 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (a)                                                 (b) 
Figure 4 Phase velocity in terms of ( , )c x ω a bird’s-eye-view (a) and a contour curve map (b) 

 
 
 
 
 
 
 
 
 

(a)                           (b)                           (c) 
Figure 5 Phase velocity in terms of ( , )c x ω 5 ,10 ,20x m m m=  and  

the dispersion curves of Rayleigh wave 
 

4. NUMERICAL EXAMPLE OF ESTIMATION OF SOIL PROPERTIES AND THICKNESSES 
USING THE NEAR FIELD PAHSE VELOCITY 

 
Figure 6 shows three typical soil layered half space used in this numerical example for the inversion analysis to
estimate elastic soil properties and thicknesses of soil deposits, in order to demonstrate that the accurate 
estimate can be achieved by using the phase velocity observed in the closer points to the harmonic load in 
conjunction with the simulation method (the stiffness matrix method is used in this paper described in chapter 2 
briefly) of all types of P-SV wave motions. As being seen from Figure 6, the three cases are chosen in such a 
way that they cover both regular (case 1 in Figure 6 (a)) and irregular (cases 2 and 3 in Figure 6 (b) and (c)) soil 
layered half space. Table 1 shows the thicknesses and elastic properties of the three soil deposits in Figure 6. In 
this numerical example of inversion analysis, the modified Marquardt method (Marquardt, 1963) is used as a
nonlinear minimization technique of the error function as, 
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where ε=square error of the phase velocity varying with frequency, ,n m =discrete frequency number, y =the 
phase velocity of the true soil profile,g = the phase velocity of the estimated soil profile, and *

1SC =the S wave 
velocity of the 1st layer (appropriate value is assumed). In this inversion, the phase velocity at the distance 
2x m=  from the load calculated using Eqn. 3.6 by the phase difference between two receivers of interval 
1dx m=  is used. 
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             (a) Case1                     (b) Case2                    (c) Case3 
 
Figure 6  Three typical soil layered half space used in numerical examples (case 1 (a) is regular soil deposits 

and cases 2 and 3 (b), (c) are irregular soil deposits) 
 

Table 1 Thicknesses and elastic properties of the three soil layered half space of Figure 6 
  
            (a) Case1                     (b) Case2                      (c) Case3 
 
 
 
 
 
Figure 7 shows the starting soil layered half spaces (initial soil deposits) for the case1 (a) to case3 (c) used in 
the inversion analysis. These initial soil deposits are appropriately chosen for which the predominant frequency 
is close to that of the true soil deposits (this predominant frequency is observable). The initial soil deposits are
assumed to be a five layered half space, while the true soil deposits is a three layered half space, by considering
the number of soil layers is one of the unknown parameters in the initial soil deposits. The unknown 
parameters, that the inversion analysis in the numerical examples must estimate, are the number of soil layers, 
the thickness of each soil layer, and the S wave and P wave velocities (or Poisson ratios) in each layer. The soil 
mass in each soil layer is treated as a known parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
             (a) Case1                    (b) Case2                     (c) Case3 
 

Figure 7  Starting soil layered half spaces (initial soil deposits) for the (a)case1 to the (c)case3 
 
Figure 8 shows the frequency variations of the phase velocity at 2x m= for the initial soil deposits and the 
true soil deposits of case 1 to case 3. By using the nonlinear minimization technique of the square error defined
by Eqn. 4.1, the unknown elastic properties and thicknesses of soil deposits described above are estimated so 
that the difference of the phase velocities of the true and initial soil deposits is minimized. In these numerical 
examples, we can confirm that the perfect true soil deposits of Figure 6 can be estimated from the initial soil 
deposits of Figure 7. 
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Figure 8  Frequency variations of the phase velocity at 2x m= for the initial soil deposits  
and the true soil deposits of (a)case1 to (c)case3 

 
5. CONCLUSIONS 
 
A new method to estimate elastic properties and thicknesses of soil deposits is presented which is independent
of the usually adopted assumption that only one Rayleigh wave mode is dominant. This method uses the near 
field characteristics of all types of P-SV wave motions on the surface of elastic multi-layered half space
generated by the vertical harmonic load applied on its surface. The proposed method does not use the filtering 
criterion, but uses the frequency varying phase velocity closer to the point of harmonic load that can be directly 
observed from the phase difference of the receivers, because the near field effects and all wave modes are taken
into consideration in the proposed simulation. The observed frequency varying phase velocity is interpreted in
this paper as a local quantity varying with the location from the vertical load. To demonstrate the capability and 
reliability of the proposed method, the numerical examples are presented by using regular and irregular soil 
profiles. 
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