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ABSTRACT : 

A finite element modeling for liquefaction analysis that is free from volume locking and hourglass instability is 
proposed. Volume locking occurs when no or very small volume change is expected, which occurs under 
undrained condition or similar in liquefaction analysis, because bulk modulus of water is much larger than that
of soil skeleton and volume of porewater hardly changes. On the other hand, hourglass instability occurs under 
excess reduced integration which is used to avoid volume locking. Proposed finite element formulation is based 
on so called u-U formulation, and different numerical integration schemes are employed for porewater and soil 
skeleton: ordinary integration for soil skeleton and reduced integration for all other element matrices. 
Numerical examples are made to evaluate effectiveness and accuracy of the proposed method by comparing 
other existing methods. The proposed method is shown to be accurate and also it is free from both volume
locking and hourglass instability. 
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1. INTRODUCTION 
 
Many design specifications have employed concept of performance-based design after the 1995 
Hyogoken-nambu (Kobe) earthquake in Japan. Prediction of soil liquefaction was sufficient in many past 
design specifications, because remedial measures are considered if liquefaction will occur. It is not enough, 
however, in the performance-based design because onset of liquefaction is allowed to occur if expected 
functions of a structure are not lost. It indicates that prediction of the behavior after the soil liquefaction is
required with high accuracy. Past blind tests and bench mark calculation have shown, however, that there exists
many scattering in the existing computer programs (see Yoshida, 1998, for example), and that displacement
especially scatters widely (e.g., JSCE, 2003).  
 
Two issues are at least to be considered in predicting displacement after soil liquefaction. The one is a 
stress-strain model. Since state point comes very close to failure line during liquefaction, slight difference of the 
behavior by the analysis will result in large difference of strains and displacements. The other is a finite element
formulation discussed in this paper. 
 
Volume change of porewater is expected to be very small in the liquefied soil during earthquakes because 
porewater that flowed into or out of the soil elements is very small as duration of earthquakes are very short. A
typical example is an undrained condition that has frequently employed in the past liquefaction analyses. Under 
the undrained condition, porewater does not flow out of and flow in an element, or soil skeleton behaves with 
porewater as one body, which will be called as apparent soil element in this paper. Since bulk modulus of water 
is much larger than that of soil skeleton, Poisson’s ratio of the apparent soil element is close to 0.5, or volume 
change hardly occurs. 
 
Volume locking occurs if Poisson’s ratio is close to 0.5 as pointed out by Yasuda et al. (1999) and Yamada
(2007), et al. It occurs because apparent stiffness of finite element becomes very large, resulting in very small 
displacement (see Yasuda et al., 1999, for example, to see how it works). In the case of a quadrilateral element
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under no volume change condition, for example, deformation into trapezoid shape, in which there is no volume
change in a whole element, requires significant volume change in each integration point to evaluate element
stiffness matrix, but volume change is prohibited by the constitutive model, which result in very stiff element
stiffness both for shear deformation and volume change. It hardly occurs in the ordinary geotechnical problems, 
but it occurs in the liquefaction analysis because volume change is not allowed in apparent soil element
although it is possible in only soil skeleton. 
 
Several methods have been proposed to avoid volume locking. Reduced Integration is the most popular
solution, in which reduced integration is made to develop element stiffness matrix. Volume locking does not 
occur if integration is made by using the Gauss-Legendre integration scheme by using quantities at the center of 
a quadrilateral element where volume change does not occur under a trapezoid shape deformation. Some FE 
computer programs such as LIQCA (LIQCA dev. team, 2002) employed this method. Use of excess reduced 
integration such as this, however, creates another problem which is usually called hourglass instability or 
zero-energy mode deformation. Since volumetric strain is zero at the integration point in the preceding case,
volume change is free to occur under zero energy, which is the reason why it is called zero-energy mode. On 
the other hand, the name of hourglass instability comes from its shape; appearance of two deformed 
neighboring elements looks like an hourglass. 
 
Anti-hourglass stiffness has been proposed to avoid hourglass instability, and some FE computer programs 
employ it (Yoshida, 1993; Fukutake, 1997). Concept to add specially designed stiffness was proposed against 
shear locking (Flanagan, 1981) related to the problem of beam bending. Various improvements have been 
proposed on shear locking after that. Selective Reduced Integration (SRI) method (Bathe, 1982), for example, is 
one of the successful methods in this field, in which deformation is separated into shear deformation and 
volume change and excess reduced integration is made only for shear deformation. Few researches were, 
however, made on volume locking, partly because there is few materials that show no-volume change behavior, 
except mixture such as soil particle and water treated in this paper. Although phenomena are similar between 
shear locking and volume locking, mechanisms are different. In this paper, we propose a method to avoid 
volume locking, and examine accuracy of the proposed method through numerical example. 
 
 
2. PROPOSED METHOD 
 
In the liquefaction analysis, apparent Poisson’s ratio comes close to 0.5. In the undrained condition, which is
frequently employed in the liquefaction analysis because porewater that goes out of or comes in an soil element
is very small, apparent bulk modulus (bulk modulus of the mixture of soil particle and porewater), yields 
K+Kw/n, where K is bulk modulus of soil skeleton, Kw is that of water, and n is porosity. Since Kw is much larger 
than K, Poisson’s ratio is large even at the state before earthquakes; it is usually 0.45 or larger. It becomes 
larger as shear modulus becomes smaller because of generation of excess porewater pressure or decease of 
effective confining stress. 
 
Poisson’s ratio of soil skeleton is not so large; it is about 0.3 (Kokusho, 1980). The large Poisson’s ratio, 
therefore, comes as soil particles and porewater behave as one body. Partly because formulation becomes much 
simpler when soil is treated as such a way, past improvement on this problem is made only on undrained
condition; governing equation becomes identical with that of total stress analysis by replacing bulk modulus 
into that of mixture, K+Kw/n. One of the author apply anti-hourglass stiffness only on soil skeleton (Yoshida, 
1993), and succeeded to consider drainage between soil elements as well as undrained condition. According to 
this experience, however, use of specially defined additional stiffness (anti-hourglass stiffness) is inconvenient 
in practical use, and a more convenient method is required. 
 
Finite element formulations of Biot’s equation (Biot, 1941) which deals with two phase material have been
proposed by many researchers (see JGS, 2007, for past formulations, for example). These formulations, 
however, do not tell how to solve the problem discussed in this paper; most of them do not deal with detailed 
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numerical integration scheme required to solve volume locking. 
 
2.1. Governing equations 
 
We start our governing equations from u-U formulation, the most accurate formulation of Biot’s equation. The 
overall equilibrium equation is 

 T ( ) 0f fn nρ ρ ρ ρ− + − + =L σ b u U&&&&  (1) 

It is noted that descriptions are made by, so-called, Voigt form, and bold letters denote matrix or vector. The 
variable u denotes displacement of soil skeleton, U is that of porewater, ρ is density of soil (mixture of soil 
particle and water), b is body force, ρ f is density of water, and σ is total stresses. The differential operator L
is introduced in calculating strain from displacement in two-dimensional analysis as 

 T 0
0

x y
y x

∂ ∂ ∂ ∂⎡ ⎤
= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

L  (2) 

Next, equilibrium equation of only porewater is given by 
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f f f

np g
n n
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where p is excess porewater pressure, g is acceleration of gravity, k is permeability, n is porosity, and 
{ }T / /x y∇ = ∂ ∂ ∂ ∂  is differential operator. Finally, continuity equation yields 

 ( )T T

w

nn p
K

= − +m ε U u&& & &∇  (4) 

where m is a vector that works same with Kronecker’s δ in tensor expression; argument of m is unity for 
normal component and is zero for shear component. Excess porewater pressure p can be eliminated from Eqns.
3 and 4 under the assumption that Kw is not infinite, resulting in u-U formulation. The bulk modulus of water Kw
is usually assumed to be infinite in the consolidation analysis. Infinite Kw, however, result in infinite P-wave 
velocity in the dynamic problem, therefore, it is hardly used. This indicates that u-U formulation is also an 
exact formulation of Biot’s equation. These equations are resulted into a finite element form as (see JGS (2007) 
for detailed derivation)  
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where variable with upper bar indicates quantity that belongs to a node. Displacement in an element can be 
obtained by using displacement at all nodes and interpolation function Nu and NU as 

 ,u U= =u N u U N U  (6) 

Detailed description of matrices and vectors in Eqn. 5 are expressed as 
 

( )T( )u u u
f

V
n dVρ ρ= −∫M N N : density of soil skeleton 

TU U U
f

V
n dVρ= ∫M N N : density of porewater 

T 1 2uu u u
f

V
g n dVρ −= ∫C N k N : influence of viscosity on soil skeleton 

T 1 2uU u U
f

V
g n dVρ −= ∫C N k N : interaction of viscosity 

T 1 2UU U U
f

V
g n dVρ −= ∫C N k N : influence of viscosity on porewater 
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T( ) ( )u u
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dV= ∫K LN D LN : element stiffness of soil skeleton 
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−

= ∫K N N∇ ∇ : interaction of stiffness 

( ) ( ) ( )TΤ Τ1uU u U
w

V
n K dV= −∫K N N∇ ∇ : interaction of stiffness 

( ) ( )TΤ ΤUU U U
w

V
nK dV= ∫K N N∇ ∇ : element stiffness of porewater 

( ) ( )T T T 1u u u u u p
f

V S V
n dV dS n dSρ ρ= − + + −∫ ∫ ∫F N b N T N T : external force on soil skeleton 

T TU U p U
f

S V
n dS n dVρ= +∫ ∫F N T N b : external force on porewater 

u ′= −T sσ : force on a face of soil skeleton 
p p= −T t : force on a face of porewater 

 
where s is a direction cosine matrix, t is a direction cosine vector of the surface load, σ′ is effective stress vector and 
D is stiffness matrix of soil skeleton. Integrals dV and dS indicate integral in an entire element and on surface of an 
element, respectively. 

 
2.2. Integration scheme in element 
 
In the formulation of Biot’s equation, it is natural to model soil skeleton and porewater separately, and to
consider interaction between them in the FE modeling. Integrations in an element are calculated by the 
Gauss-Legendre integration. Stiffness matrix K, for example, is calculated for a quadrilateral isoparametric 
element in a two-dimensional problem as, 

 
2 2

T

1 1
( ) ( ) ( ) ( )u u u T u

ij ij ij ij
V

i j
dV w

= =

= ≈ ∑∑∫K LN D LN LN D LN  (7) 

where wij is an weighting coefficient and subscripts i and j indicates integration points. Number of integration 
points in one direction is two in Eqn. 7, which is, therefore, called two-point integration in the following
although there is four integration points in an element in the two-dimensional analysis. As explained in the 
preceding, this integration causes volume locking under no-volume change condition or similar. In order to 
avoid volume locking, we need to proceed a more excess reduced integration, in which number of integration 
point is one instead of two, and is usually called one-point integration. 
 
A simple two-dimensional problem is dealt with in this paper, which uses quantities only in two dimensions, 
and is different from plane strain or plane stress condition. Then the stiffness matrix is divided into shear 
deformation related term and the rest as 

 
2 0 0 0
0 2 0 0
0 0 0 0 0

G K G K G
G K G K G

G

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

D  (8) 

SRI against shear locking employs two-point integration to latter part (volume change term) and one-point
integration to former part (shear deformation term). Therefore, we need to employ one-point integration to the 
latter term and two-point integration to the former term in order to avoid volume locking. This method is, 
however, inconvenient in the liquefaction analysis in which the consideration of dilatancy (volume change 
associated with shear deformation) is indispensable; constitutive model is not so simple as Eqn 8. 
 
Water is originally instable against hourglass deformation because it does not have shear resistance, and 
Poisson’s ratio of soil skeleton is far from no volume change deformation. Therefore, it is reasonable to employ 
two-point integration to soil skeleton and one-point integration to water. Then a new problem appears; which 
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integration scheme is to be employed in the interaction term such as Kuu, KuU, KUU, Cuu, CuU, and CUU. As shown 
in the next section, we suggest using one-point integration for all these integrations; two-point integration is
made only for K. It means that deformation like hourglass mode is carried only by soil skeleton, which is 
natural feature because porewater does not resist against hourglass deformation. 
 
 
3. NUMERICAL EXAMPLE 
 
3.1. Analyzed model 
 
A simple rectangular element shown in Figure 1 is used to examine accuracy of finite element modeling
scheme. In order to escape from factors that are not related to the present problem, we apply hourglass force of 
Q (pair of two force couples) which is also shown in Figure 1. Accuracy is examined by comparing hourglass 
displacement δ (deformation like trapezoid shape shown in Figure 1) under the action of hourglass force Q. 
Parameters used in the example are also shown in the figure, where G is shear stiffness and ν is Poisson’s ratio
of soil skeleton. Undrained condition (u=U) is also employed in order to make discussion simple, under which 
apparent Poisson’s ratio of an apparent soil element becomes 0.499. 
 

 
Figure 1 Rectangular model 

 
3.2. Beam analogy 
 
Exact solution of the problem in Figure 1 is not known. We employ beam analogy to obtain a solution that can 
be compared with proposed method, because deformation in Figure 1 looks like deformation of beam under
pure bending. If it is pure bending deformation, moment-curvature relationship is obtained based on 
Bernoulli-Euler theory, as 

 M EIκ=  (9) 

where M is bending moment, E is Young’s modulus, I is moment of inertia, and κ is curvature. Equilibrium 
condition in Figure 1 is 

 2M Qb=  (10) 

Then hourglass deformation is calculated as δ = bκ, yielding δ =0.2308 m under the action of Q=1000 kN. It is 
noted that this is not exact solution because bending deformation and hourglass deformation assumed here are a
little different to each other. The width 2a is, for example, infinitesimally small in beam theory whereas it is
finite value in Figure 1, top and bottom edges curves in the beam whereas it is straight, and bending moment is
caused by distributed load in the beam whereas it is caused by concentrated force at node. In other words, 
hourglass deformation in Figure 1 is obtained by restraining the bending deformation. Therefore, expected 
displacement against hourglass deformation is smaller than the displacement by the beam theory in Eqn. 9. 
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3.3. Element stiffness matrix 
 
Parametric studies are made on the method of analysis and method of integration in an element. 
 
(1) Total stress analysis 
Soil skeleton and porewater behave as one body in whole element in the total stress analysis. The integration of 
element stiffness matrix K is of interest in this case. The governing equation is obtained by setting bulk 
modulus to be K+Kw/n. The following 6 integration methods are investigated. 

a) Two-point integration: integration at two points. 
b) Reduced Integration: integration at one point. 
c) Reduced Integration with anti-hourglass stiffness  

Anti-hourglass stiffness (Flanagan, 1981) is added to the stiffness obtained by one-point integration. 
d) Selective Reduced Integration  

Stiffness matrix is divided into shear deformation component and volume change component, and 
two-point integration is employed to the shear deformation component and one-point integration to the 
volume change component. 

e) Selective Reduced Integration only for soil skeleton 
Only soil skeleton is considered, and stiffness matrix is evaluated by SRI method. This case is made only 
to compare with other methods. 

f) Two-point integration only for soil skeleton 
Same as before except that integration is made by two-point integration. 

 
(2) Two phase analysis by u-U formulation 
Two phase material is modeled by u-U formulation. The constraint of undrained condition is given only at
nodes as u=U in this formulation. In this example, however, displacements become same in whole elements
because the same interpolation functions are used for both soil skeleton and porewater. The following cases are 
examined by changing integration schemes. 

a) Two-point integration: integration at two points for all matrices. 
b) Reduced Integration: integration at one point for all matrices. 
c) Proposed method 

Two-point integration is used only to stiffness matrix of soil skeleton K and one-point integration to the 
rest. 

d) Selective Reduced Integration 
SRI is applied only to stiffness matrix of soil skeleton K and one-point integration to the rest. 

 
3.4. Results and discussion 
 
Results of analysis are summarized in Table 1. 
 
(1) Total stress analysis 
Displacement by two-point integration is very small to be order of 1/100, indicating the appearance of volume 
locking. As stiffness matrix becomes singular in one-point integration because no strain occurs at the center of 
an element although is not a rigid body deformation, displacement cannot be obtained or infinite displacement 
is expected in this case, therefore the result is shown as ’Infinite’ in the table. On the other hand, stable behavior 
is obtained by introducing anti-hourglass stiffness, and the result is close but a little smaller compared with the 
beam theory. Volume locking does not occur when SRI is used because effect of volume change is evaluated at 
the center. In addition, hourglass instability does not occur because shear deformation is evaluated by four 
points in an element. Displacement by SRI is close but a little smaller than that of anti-hourglass stiffness. Both 
SRI for apparent soil element and for a bare soil skeleton gives the same displacement and two-point
integration for soil skeleton gives smaller displacement than these cases. It may indicate that volume locking
may affect displacement even when Poisson’s ratio is as small as 0.3. 
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(2) Two phase analysis by u-U formulation 
If two-point integration is used for matrices related 
to porewater (Kuu, KuU, KUU), displacements are 
remarkably small compared with the displacement 
by beam theory as well as by total stress analysis. 
On the other hand, if SRI is used for stiffness 
matrix of soil skeleton with one-point integration to 
matrices related to porewater, result is same as that 
of SRI in total stress analysis; SRI gives the same 
element stiffness matrix both for total stress 
analysis and u-U formulation. It indicates that 
proposed method is appropriate and that calculation 
of the all matrices related to porewater is to be 
integrated by excess reduced integration to avoid 
volume locking. 
 
Displacement by the proposed model is 22% 
smaller than that of total stress analysis with SRI 
only for soil skeleton. This indicates that element 
stiffness between two-point integration and SRI are 
different. Since there is no exact solution of this 
problem, it is meaningless to continue discussion on 
accuracy more. What important is that two 
displacements are of the same order as the beam 
theory. 
 
It is emphasized that proposed method has an 
advantage in respect to the treatment than the SRI 
because the problem on how to treat dilatancy is not 
clear in the SRI method. It is also advantage of the 
proposed method that it shows same results as 
ordinary two-point integration when there is no 
water. 
 
 
4. CONCLUDING REMARKS 
 
A new finite element formulation is proposed in the liquefaction analysis. It is based on u-U formulation, one of 
the most exact formulations of Biot’s equation, and soil skeleton and water is modeled as it is. The proposed 
method consists of ordinary Gauss integration for integration related to soil skeleton and reduced integration for
other matrices; therefore, it is more convenient to handle compared with SRI method. This method has
advantage that volume locking, which occurs when Poisson’s ratio comes close to 0.5, does not occur, and 
hourglass instability, which occurs under excess reduced integration, does not occur, too. In addition, dilatancy,
which is necessary to be considered in the liquefaction analysis, can be naturally considered. 
 
Numerical examples are carried out to evaluate accuracy of the integration scheme, and the following 
conclusions are obtained. 
 
1) Volume locking as well as hourglass instability does not occur in the proposed method. Displacement is the 

same order as those by other methods that can avoid volume locking and hourglass instability. 
2) Both total stress analysis and u-U formulation gives the same results when selective reduced integration is 

employed. 

Table 1 Results of analysis 
Type Method of integration δ (m) 

Beam theory 2.308×10-1 

Two-point 1.338×10-3 

RI Infinite 

RI+anti-hourglass stiffness 2.185×10-1 

SRI 2.000×10-1 

SRI only for soil skeleton 2.000×10-1 

Total stress 

Two-point only for soil skeleton 1.556×10-1 

The number of integration point  

per direction 

K Kuu KuU KUU 

δ (m) 

2 2 2 2 1.338×10-3 

2 2 2 1 1.779×10-3 

2 2 1 2 2.654×10-3 

2 2 1 1 5.219×10-3 

2 1 2 2 1.779×10-3 

2 1 2 1 2.654×10-3 

2 1 1 2 5.219×10-3 

2 1 1 1 1.556×10-1 

1 2 2 2 1.350×10-3 

1 2 2 1 1.800×10-3 

1 2 1 2 2.700×10-3 

1 2 1 1 5.400×10-3 

1 1 2 2 1.800×10-3 

1 1 2 1 2.700×10-3 

1 1 1 2 5.400×10-3 

1 1 1 1 Infinite 

u-U 

formulation
 

SRI 1 1 1 2.000×10-1 
RI: Reduced Integration, SRI: Selective Reduced Integration 
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3) Displacements by two-point integration and selective reduced integration are different to each other even 

when Poisson’s ratio is as small as 0.3. 
4) It is necessary to employ reduced integration to all matrices that relate porewater in the u-U formulation. 
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