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ABSTRACT 
 
The seismic soil response can be analyzed in the frequency (linear or equivalent linear approaches) as well as in 
the time domain (e.g. complex constitutive models).    
The nonlinear constitutive properties of soils being difficult and costly to determine, the present work proposes a 
simplified constitutive model to analyze the dynamic soil response for moderate or strong earthquakes at large 
scales (alluvial basins). 
In this work, we consider a non linear viscoelastic constitutive model involving both non linear elasticity as well 
as non linear viscous behavior. The non linear elastic part of the model is described by a hyperbolic law. The 
description of the viscosity starts from a Nearly Constant Quality Factor (NCQ) model able to fulfil the causality 
principle for seismic wave propagating in dissipative materials. In the NCQ model, we introduced a dependence 
on the excitation level in order to consider the variations of moduli and the increasing damping ratio. This 
dependence is controlled during the 3D stress-strain path by the variation of the second order invariant of the 
strain tensor. Applications are performed to study the rheological response of the materials without considering 
wave propagation, and then to study the effects of nonlinearity on the generation of higher harmonics and shift of 
spectral frequencies during wave propagation in a sedimentary layer. Starting from the here proposed mechanical 
formulation including the main features of soil nonlinear behavior, the analysis of the nonlinear response of a 
sedimentary layer submitted by a vertical SH wave is then performed thanks to a discretization by the finite 
element method. Validations of the model for different inputs show its ability to recover low amplitude ground 
motion response. For larger excitation levels, the analysis of wave propagation in sedimentary layer leads to 
interesting results: at the free-surface the spectral peaks are shifted to lower frequency values (when compared to 
the input motion); higher frequency components are not overdamped as for the equivalent linear model; the 
amplification level is generally lower. These results show the ability of this simplified nonlinear model to 
investigate, in the near future, site effects in 2D/3D alluvial deposits for strong earthquakes. 
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1. INTRODUCTION 
 

The analysis of seismic wave propagation in alluvial basins is a difficult task since various phenomena are 
involved at different scales: resonance at the scale of the whole basin (Bard & Bouchon, 1985, Semblat et al., 
2003), surface waves generation at the basin edges (Bard & Riepl-Thomas, 2000), soil non linear behaviour at the 
geotechnical scale (Iai et al., 1995, Bonilla et al., 2005). In this work, the attention is focused on the aspects of 
nonlinear behaviour of dry isotropic soils submitted to dynamic loadings. Various approaches are possible to 
model the dependence of the mechanical features of soils on the excitation level: equivalent linear model 
(Schnabel et al., 1972) improved by Kausel & Assimaki (2002) and nonlinear cyclic constitutive equations (e.g. 
based on plasticity) (Matasovic and Vucetic, 1995). The use of elastoplastic models is generally limited for large 
scale propagation analyses as a consequence of the large number of parameters needed. In this paper, a 3D 
nonlinear viscoelastic modelling of the dynamic soil behaviour is proposed. This model takes simultaneously into 
account nonlinear elasticity and viscosity.  
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2. MECHANICAL FORMULATION OF THE MODEL 
 
2.1 3D linear viscoelasticity 

2.1.1 General formulation 
The 3D formulation of the viscoelastic model starts from the following relation  
 σij=sij+pδij (1) 
where σij, sij, δij  are the components of the Cauchy stress tensor, of the deviatoric stress tensor, and of the 
Kronecker unit tensor respectively and p the volumetric tension. For an isotropic material, we can write 
 p=K⋅ ekk (2) 
where K and ekk are the bulk modulus and the volumetric strain respectively. The relation between the components 
of the deviatoric stress tensor s and the shear deviatoric strain tensor e in the case of linear viscoelasticity is 
formulated in the frequency domain as simply as:  
 sij (ω)=2M(ω)eij(ω) (3) 
sij(ω), eij(ω) are the Fourier transforms of the components of the deviatoric stress and strain tensors. M(ω) is the 
complex-valued, frequency-dependent, viscoelastic modulus from which we can define the specific attenuation 
Q-1 in the following way : 
 2ξ=Q-1(ω) ≈ Im(M(ω))/Re(M(ω) (4) 
where ξ is the damping ratio and Re and Im are the real and imaginary parts of a complex variable (resp.). 
 
2.1.2 NCQ models 
This family of models is defined in term of the quality factor Q. A nearly constant Q in a broad frequency range 
has been derived by many authors by various combinations of dashpot and spring elements describing different 
rheological cells (Biot (1953), Liu et al. (1976), Mozco & Kristek (2005), etc.). Hereafter the implementation of 
the NCQ model of Emmerich & Korn (1987), principally based on the generalized Maxwell model, is briefly 
presented to recall its essential features. In the following, this model will be generalized in order to make the 
attenuation dependent on the strain level. In the linear case, a frequency dependent complex modulus can be 
defined as follow (variables with bracket are not tensorial): 
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MU is the unrelaxed (instantaneous) modulus and MR is the relaxed (long term) modulus. The y(l,0) variables 
characterize the rheological model and are calculated by means of an optimization method in order to obtain a 
nearly constant attenuation in a certain frequency range. Using the eqs. (4) and (5) the attenuation has the 
following expression: 
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The )(lω frequencies characterize each individual rheological cell. The constitutive equations of the linear 
viscoelastic model are then found: 
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where ζ(l)(t) are relaxation parameters physically related to the anelastic deformation of the lth-cell. 

2.2 3D nonlinear viscoelastic model 

2.2.1 Principles of the nonlinear model 
In order to describe the shear modulus and damping variations of the soils vs the excitation level, an elastic 
potential function and a dissipation function depending on the second invariant of the strain tensor are 
introduced. In particular the “NCQ” model, already described above, now becomes able to consider increasing 
damping ratios as suggested from earthquakes records and geotechnical data (Iai et al, 1995; Vucetic, 1990). The 
changing of the attenuation vs induced strain level is controlled during the 3D stress-strain path by the variation 
of the second order invariant of the strain tensor.  

2.2.2 Formulation of the extended NCQ model (e-NCQ) 
To account for the nonlinear behaviour of soils in the case of any 3D stress-strain path, equation (7) is 
generalized as follows: 
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where J2 is the second invariant of the deviatoric strain tensor.  
In addition, the shear modulus is assumed to change during the global stress-strain path according to the 
following relation: 
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and where MU,0 denotes the unrelaxed modulus characterizing the instantaneous response of the soil at small 
strains and α is a parameter quantifying its nonlinear behaviour for larger strains. The octahedral strain octγ is 
now introduced: 
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Such a dependence of the nonlinear elastic modulus on the octahedral strain implies a strain dependence for the 
variables y(l) and ζ(l). In the case of 3D loadings, different authors (El Hosri, 1984; Bonnet et Heitz; 2005) 
proposed relations making ξ depend on the strain level. 
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Here we adopt the following one: 
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where ξ0 and ξmax  characterize the dissipated energy in the small and larger strain ranges respectively. Typical 
MU(γ)=G(γ) and ξ(γ) curves are reported in Fig. 2. The ξ and Q-1 parameters are related by: 
 

)(21
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2.2.3 Features of the extended NCQ model 
In the previous paragraph, the solution of equation (9) in the limit of low excitation levels has been found. For 
low octahedral strain, we may consider that: 
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For every other value of the induced strain, the Q-1 factor increases with strain according to equation (16). This 
change has no influence on the frequency range in which Q-1 is constant. In other words, in equation (8) only the 
variables y(l,0) change to account for the variation of the damping with strain. We therefore introduce a strain 
variation of the variables y(l) in the following form: 
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Using equations (4), (12) and (14), for every level of induced octahedral strain, equations (5) and (6) can be 
rewritten in the following form, respectively: 
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where, using equation (15), c(|γoct|) is given by: 
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For every level of induced octahedral strain, equation (8) can be written in a more general form: 
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The latter expression and equation (13) are used to solve equation (9) in the time domain. 
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2.3 Synthesis: 1D case 
 
For a unidirectional propagating shear wave, |γoct| is equal to 2|γ|, where γ is the shear strain. Equation (13) can 
be written in the form: 
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In this case, equation (24) expresses a hyperbolic law for the reduction of the shear modulus as the one proposed 
by Hardin and Drnevich (1972). As a consequence, the following equation for the function c(|γoct|) is obtained: 
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where ξmax and ξ0  are two constant rheological experimental values. At every time, the values associated to the 
functions ζ(l)(t) are obtained by solving the following equations: 
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where the variables y(l,0) are known for the lower strain Q-1 value (formula (6)). Finally, the rheological equation 
(9) is used for the considered 1D case: 
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3. VALIDATION OF THE CONSTITUTIVE MODEL FOR CYCLIC LOADINGS 
 
The nonlinear constitutive law is firstly validated for 1D cyclic loadings of variable amplitudes directly solving 
eqs (25), (26) and (27) without considering wave propagation. The α parameter is α=1000 and the elastic shear 
modulus G0=80MPa. We consider eqs (25) and (26) with the following asymptotic damping values: ξ0=0.025 
and ξmax=0.25.  
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Figure 1: stress-strain curves from cyclic loadings of 
variable maximum amplitudes at 10Hz: nonlinear 
extended NCQ model (solid) and 1st loading curve.  

Figure 2: comparison of the shear modulus and 
damping values of the extended NCQ model (cyclic 
loadings) with the theoretical variations predicted by 
equations (14) and (25).

 
In Fig. 1, some of the results (at 10Hz) are displayed as stress-strain loops for γmax=10-5, 10-4, 5.10-4. For each 
case, the secant shear modulus G is calculated and normalized by G0 (the ratio r=G/G0 is given in each curve). 
The first case (Fig. 1, top left), corresponding to γmax=10-5 and r=0.99, leads to a nearly linear response with an 
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elliptical stress-strain loop. In the 2nd case, γmax=10-4 and r=0.91 (Fig. 1, top right), the area of the loop is larger 
and there is a slight decrease of the shear modulus. For the largest excitations (γmax=5.10-4; r=0.77) and 
(γmax=10-3; r=0.50) (Fig. 1, bottom), the nonlinear effects are obvious since the stress-strain loops are strongly 
modified (secant modulus, area, etc). From these loops, it is straightforward to derive the secant shear modulus 
as a function of maximum shear strain. For each loading level the dissipation has been quantified as well 
(Kramer, 1996). The actual G(γmax) and ξ(γmax) curves are then compared to the theoretical curves in Fig. 2. The 
effective shear modulus (solid) is very close to the theoretical one (dotted). For the damping ratio, the difference 
is larger for large shear strains, but the effective dissipation increases as expected. 

4. NUMERICAL IMPLEMENTATION FOR WAVE PROPAGATION 
 
4.1. Theory    
 
The mechanical model described above is introduced into the framework of the finite element method, for the 
case of a unidirectional shear loading. We consider a homogeneous layer with nonlinear behavior over an elastic 
bedrock. The domain is discretized into (N-1)/2 linear quadratic finite elements, each of the N nodes having 1 
degree of freedom (horizontal motion) (Fig. 3). Using square brackets […] and braces {…} to denote matrices 
and vectors, the discretized equation of motion can be written in the following form at each time step (n+1)Δt : 
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where [M], [C] and [K(un+1)] represent the mass, the radiation condition at the bedrock/layer interface (elastic 
substratum), and the stiffness matrix respectively. {an+1}, {vn+1} and {un+1} are the acceleration, velocity and 
displacement vector respectively, while {Fn+1} is the vector of external forces at the interface. ζ(l) and ω(l) are the 
relaxation parameters and central frequencies of the rheological cells (resp.), H(l)(un+1) corresponds to the right 
hand-side term in equation (26) and lmax is the total number of cells included in the model (lmax=3 herein). 
For the time integration, an extension of the Newmark formulation is used, namely an unconditionally stable 
implicit α-HHT scheme (Hughes, 1987). This scheme allows a control of the higher frequencies generated 
during the propagation. At each time step, the Newton-Raphson iterative algorithm is adopted to deal with the 
nonlinear nature of the first equation in system (28). The Crank-Nicolson procedure (Zienkewicz, 2005) is 
simultaneously used in order to estimate the ζ(l)(t) variables in the first order differential equations (system (28), 
bottom). 

4.2. Applications to the amplification of synthetic wavelets 

We performed two different types of simulations: linear model (LM) and nonlinear model (NM). For the first 
one (β0 = βmax = 2.5% and α = 0), mechanical and dissipative properties of the material do not depend on the 
excitation level while, in the second case (β0 = 2.5%, βmax = 25% and α = 1000), both elastic and dissipative 
properties are function of the induced strain as depicted in Fig. 4. For this model, we performed simulations for 
a 30m thick soil layer on elastic bedrock without any seismic impedance contrast. The input has been 
constructed making the product in the time domain between 2 sinusoids whose frequencies are respectively 3Hz 
and 0.33Hz. The total duration of the resulting acceleration signal is about 2 s and its maximum amplitude is 
multiplied by a weighting coefficient every time. The comparisons between the LM (dotted line) and the NM 
(solid line) are made in Fig. 5 in terms of acceleration time histories and Fourier spectra at the top of the layer 
for 3 input acceleration levels (0.5, 1.0 and 1.5 m/s2). For all the signals at the free surface, the amplification by 
a factor 2 has been taken into account. In Fig. 6, the results at the centre of the soil layer are shown, in particular 
the outputs in terms of stress time histories and stress-strain paths for various excitation levels given previously. 
The NM time graphs of Figs. 5 and 6 show a time delay in the propagation with respect to the corresponding 
graphs of the LM results. This time delay becomes larger when the excitation level increases. For the NM case, 
the frequency content of the calculated accelerations generally shows two features which should be mentioned 
(Fig. 5) : 1) a significant decrease of the spectral amplitude for the dominating frequency of the input signal with  
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Figure 3: 1D soil layer over an elastic bedrock: finite 
element discretization and absorbing boundary 
condition at the interface. 

Figure 4 : modulus reduction (solid) and increasing 
damping (dashed) vs shear strain. 

 
increasing excitation level; 2) increasing of 3rd and 5th (Van Den Abeele et al., 2000). The stress-strain paths 
show a significant energy dissipation increase and a strong reduction of the shear modulus (Fig. 6).  
 

         
 

Fig. 5: accelerations (left) and corresponding Fourier 
spectra (right) at the top of the soil layer in the 
homogeneous case, for 3 values of the input maximum 
acceleration on bedrock (0.5, 1.0 and 1.5 m/s2), and in 
the case of linear and nonlinear simulations (LM and 
NM).  

Fig. 6 : stress time histories (left) and stress-strain paths 
(right) in the middle of the soil layer, in the 
homogeneous case, for 3 values of the input maximum 
acceleration on bedrock (0.5, 1.0 and 1.5 m/s2), and in 
the case of linear and nonlinear simulations (LM and 
NM).

5. CONCLUSIONS 
 
A 3D nonlinear viscoelastic model (“extended NCQ” or e-NCQ) is proposed to approximate the hysteretic 
behaviour of alluvial deposits undergoing dynamic excitations. Such nonlinear features as the reduction of shear 
modulus and the increase of damping are controlled by the variations of the 2nd invariant of the strain tensor 
during multidimensional loadings. In the case of a unidirectional shear loading, nonlinearity is controlled by 
only one shear strain component: the nonlinear elasticity by a hyperbolic law and the viscosity by a NCQ model 
in the frequency domain but strain amplitude dependent. In 1D nonlinear wave propagation simulations, the 
model allows to account for both the generation of higher order harmonics, the reduction of the spectral 
amplitudes and a decreasing of outputs spectral frequencies for increasing amplitudes of inputs. The interest of 
the simplified nonlinear model proposed herein is to reduce the computational cost for the analysis of strong 
seismic motion in 2D/3D alluvial basins. In fact, in the 1D case, the reduction of shear modulus is controlled by 
a hyperbolic law with only one parameter α  estimated from the experimental knowledge of the G(γ) curve. As a 
consequence, the dissipation properties are directly derived from the hyperbolic law and from two other 
characteristic parameters responsible for the minimum and maximum loss of energy at lower and larger strain 
levels, ξ0 and ξmax. These are sufficient to give an overall description of the unloading and reloading phases 
during the seismic sequence. The proposed model will allow future computations in the case of 2D or either 3D 
alluvial basins for which the amplification is generally found to be much larger than predicted through 1D 
analyses (Chaillat et al., 2008; Sánchez-Sesma & Luzón, 1995, Semblat 2000). 
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