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ABSTRACT : 
The Hu spectral model, a modified Kanai-Tajimi spectral model for the stationary stochastic process of 
earthquake ground motion, is analyzed. According to the Hu spectral model, the spectral density function of the 
Kanai-Tajimi spectrum is modified only during the low frequency range and in good accordance with the 
Kanai-Tajimi spectrum during the moderate and high frequencies. It is proved that the earthquake-induced 
ground acceleration process with the Hu spectrum is essentially the result of which a filtered Gaussian white 
noise process on the rock is filtered by the overlaying soil represented by a linear single-freedom-degree system, 
namely it is a twice filtered white noise process. This shows that the Hu spectral model is not only concise in the 
mathematical expression but also distinct in physical meaning and reasonable in practice. Furthermore, the low 
frequency control factor which determines the low frequency contents in Hu spectral model is investigated and 
evaluated from the observation data of earthquake ground motion. 
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1. INTRODUCTION  
 
The heavy economic loss and human injury are usually caused in a severe earthquake, the mean reason is that 
the civil engineering facilities are not able to resist the earthquake induced ground motions and failure during 
the earthquake. In order to reduce the earthquake damages, the most effective measure is to enhance the 
earthquake-resistant capability of structures and optimize the structural performance due to allowable costs. 
Therefore, it is necessary to properly analyze and evaluate the seismic responses of structures. At first, the 
earthquake-induced ground motions ought to be estimated and described. 
 
It is known that the randomness exists in the occurrence of earthquakes in time and space, and the uncertainty is 
vast in predicting intensities of resulting ground motions, so the earthquake-induced ground motions are usually 
considered as stochastic processes. Obviously it is reasonable to consistently account for the underlying 
uncertainties and randomness involved in the earthquake ground motions and evaluate quantitatively the 
structural vulnerability and safety subject to earthquake excitation on the basis of probabilistic methods. 
Because the strong motions are rare events, it is practically impossible to obtain a large number of the stochastic 
process samples of ground motions and determine their probabilistic characteristics by statistic methods. In 
practice, the random models are usually utilized for the description of earthquake ground motions and the 
models’ parameters may be identified from the actual earthquake records. The random ground motion model is 
distinct in physical conceptions and it is commonly described by the power spectral density functions in 
frequency domain. 
 
The stochastic process model to simulate the earthquake ground accelerations was first proposed by Housner 
(1947), and this model is equivalent to a stationary Gaussian white noise process, by which the ground motion is 
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assumed as a sequence of consecutive velocity pulses. Subsequently, some filtered white noise models are 
extensively proposed to represent the earthquake ground motion. The stationary filtered white noise model 
presented by Kanai and Tajimi (Kanai, 1957; Tajimi, 1960) is a well-known and favorite for many researchers 
and engineers and widely used in the field of earthquake engineering. In the Kanai-Tajimi spectral model, the 
rock acceleration is assumed a white noise process and the overlying soil deposits are simulated by a linear 
single-degree-of-freedom system. However, the lower frequency contents of ground motions are magnified 
unpractically due to Kanai-Tajimi model, may lead to unreasonable response analysis results for structures with 
lower natural vibration frequencies. Furthermore, the Kanai-Tajimi spectral model is singular in the point of 
zero frequency and cannot be integrated twice, so the displacement and velocity variances of the ground motion 
will be infinite. In order to improve the Kanai-Tajimi spectral model, some modified Kanai–Tajimi models are 
presented (Hu and Zhou, 1962; Ou, Niu and Du, 1991; Clough and Penzien, 1993; Hong, 1995). Based on these 
models, further modifications are made by researchers (Du and Chen, 1994; Lai, Ye and Li, 1995; Li and Zhai, 
2003). In all the modified Kanai–Tajimi models, the Hu spectral model eliminate successfully the problems of 
the Kanai-Tajimi spectral model in frequency zero, meanwhile the advantages of this model are retained. The 
Hu model is consistent properly with the statistic results of the strong motion records and concise in 
mathematical expression, so it is more reasonable for describing the statistic characteristics of the 
earthquake-induced ground motions. 
 
In this paper, the physical meaning of the Hu spectral model is interpreted, and the frequency parameter to 
restrain the low frequency content of earthquake ground motions is discussed. The autocorrelation function of 
the Hu spectrum is deduced by state space method. These results will provide a basis for random response 
analysis of the seismic structures in time domain. 
 
 
2. MODELING OF EARTHQUAKE-INDUCED GROUND MOTION 
 
The power spectral density function of stationary Gaussian process with the power spectrum of Kanai-Tajimi is 
expressed as: 
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where gω  and gζ  are the parameters of the overlaying soil deposits; 0S  is the constant spectral intensity of 
the rock motions. 
 
The Kanai-Tajimi spectrum is the solution that the white noise process is filtered, and the following equations 
are used for this purpose: 
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in which )(tU&&  is the rock acceleration, it is the Gaussian white noise process. 
 
In Hu model, the power spectral density of random ground motion process is modified as: 
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where cω  is the factor of low frequency control. 
 
Comparing with the Kanai-Tajimi model, the Hu spectral model modifies only over the low frequency range of 
the Kanai-Tajimi spectrum and is in good accordance over the range of high frequency. Obviously the velocity 
and displacement variance of the ground motion are convergent due to Hu spectral model. Therefore, the Hu 
spectral model can not only remain the advantages of the Kanai–Tajimi model but also eliminate the drawbacks 
of the Kanai–Tajimi model. 
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The rock motion is assumed as the white noise process due to the Kanai-Tajimi model, obviously this does not 
accord with the realities in physics. In fact, the acceleration of the rock motion induced by an earthquake must 
be the color noise process with certain characteristics. Assuming it can be expressed by the following equation: 
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it can be proved that the spectral density function of the ground acceleration )(ta  obtained from the filtered 
rock motion )(tU&&  by equations (2.2) and (2.3) has the same form with the expression of the Hu spectral model. 
 
Thus the Hu spectral model may be considered the improvement of the Kanai-Tajimi spectrum, and can be 
interpreted physically that the rock acceleration process with the spectral density function defined by Eq. (2.5) is 
filtered by a linear single-degree-of-freedom system with natural frequency gω  and damping ratio gζ , as a 
result, it will lead to a stochastic process with the Hu spectrum. 
 
 
3. INTERPRETATION OF THE MODIFIED KANAI-TAJIMI SPECTRUM MODEL 
 
Since the Hu spectrum is the result of filtered color noise process, what are the properties of the rock 
acceleration )(tU&& ? There are two spectral parameters, 0S  and cω , in equation (2.5). Figure 1 shows the 
relationships between the two parameters and the spectral amplitude. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Filtered white noise in rock               Figure 2 Hu spectral model 
 
Observing the figure 1, the spectral density of the rock acceleration only lies differences with white noise in the 
lower range of frequencies, and they are well compatible each other over the medium and high frequency range. 
So the model of the stochastic rock motion with spectrum given by Eq. (2.5) is the modification to white noise 
model by reducing only the lower frequency contents of the motion. The modified limits are controlled by the 
factor cω , i.e. the frequency contents of the white noise are modified during the approximate range from zero to 

cω2 . 
 
Considering the following filter equations: 

)()( tytU &&&&& =                                         (3.1) 
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in which )(tp  is the white noise process with spectral intensity 0S . 
 
Let tietp ω=)(  and ti

yp eiHy ωω)(= . Substituting )(tp  and )(ty  into Eq. (3.2) and considering the condition 

0≠tie ω gives the transfer function: 
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Then the spectral density function of )(ty  is given by 
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Considering the relationship: 
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The spectral density function of )(tU&&  is deduced as 
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It is clear that Eq. (3.6) is same with Eq. (2.5). Therefore the rock motion process is a filtered white noise 
process and the stochastic process with the Hu spectrum is the result that the filtered white noise process is 
filtered again, i.e. it is the twice filtered white noise process. 
 
In Eq. (2.5), 0S  represents the intensity of the rock acceleration, which depends on the energy released during 
the earthquake and can be determined by the mean value of the peak ground accelerations. The parameter cω  
limits the range of low frequency reduction, and the more this frequency parameter, the less the low frequency 
content of earthquake ground motion, so it may be related to the fault mechanisms. In generally, the high 
frequency contents of the rock motion are abundant when the earthquake occurs, and they are usually reduced 
by soil filters and some contents with long periods will be amplified in the process of propagation. In this word, 
it is not only concise in the mathematic expression that the rock acceleration model given by Eq. (2.5) only 
modifies the frequency contents during the lower range and holds basically the frequency characteristics of the 
white noise spectrum during the medium and high frequency range, but also physically reasonable, because the 
influences of the high frequency contents of the rock motion have not been very strong when the motion are 
propagated at the site. 
 
Total four parameters, cω , gω , gζ  and 0S , are involved in the Hu spectral model, and they have been 
studied by some researchers. The values of the four parameters at two site conditions are suggested by a least 
squares regression to the power spectral density function obtained from the instrumented data of strong ground 
motions (Hong, Jiang and Li, 1994), the results are listed in Table 1. Table 2 also provides the values of the four 
parameters based on three seismic accelerograms received by SMART-1 array (Wang and Jiang, 1997), and the 
results are shown in Figure 2 as well. 
 

Table 1  The parameters of Hu spectral model (by Hong Feng) 

Site Condition 0S  gω (rad/s) cω (rad/s) gζ  
Soft soil 1.574 10.25 1.742 1.006 

Medium soil 1.076 17.07 2.108 0.7845 

Table 2  The parameters of Hu spectral model (by Wang Jun-jie)  

No. 0S (×10-3) gω (rad/s) cω (rad/s) gζ  
E-05 3.30 16.77 2.65 0.63 
E-39 55.00 6.97 3.60 0.40 
E-45 14.05 10.59 1.51 0.56 

 
 
4. CHARACTERISTICS OF ROCK MOTIONS IN TIME DOMIAN 
 
The statistic characteristics of the random ground motion process with Hu spectrum are described by the 
spectral density function given by Eq. (2.4) in frequency domain, and the statistic characteristics in time domain 
can be described by the correlation function. Because the Hu model is a twice filtered Gaussian white noise 
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process, the time properties of the rock acceleration can be obtained by using the filter equations (3.1) and (3.2). 
Introducing the state space vectors, Eq. (3.2) is rewritten as 

)(}{}]{[}]{[ tpFzBzA r=+&                                (4.1) 
in which 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
y
y
y

z
z
z

z
&&

&

3

2

1

}{ , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
010
100

][A , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=
010
100

00
][

3
c

B
ω

, 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

0
0
1

}{ rF  

Because ][A  and ][B  are symmetric, the characteristic equation of the Eq. (4.1) is 
3,2,1}0{}]){[]([ ==+ jBA jj ϕλ                             (4.2) 

The complex eigenvalues may be solved from Eq. (4.2) as 
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Substituting Eq. (4.3) into Eq. (4.2) leads to the complex modes of the system: 
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It can be proved that the complex modes are weighted orthogonal with respect to the matrix ][A  and ][B . The 
orthogonality may be expressed as 
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The response }{z  of the system can be expressed as the superposition of the modal contributions: 
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Substituting Eq. (4.5) in Eq. (4.1) and premultiplying each term in this equation by T
j }{ϕ . Because of the 

orthogonality conditions of the complex modes, the uncoupled equation for each mode can be obtained: 
3,2,1==− jphh jjjj ηλ&                             (4.6) 
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The solution to the Eq. (4.6) may be solved as 
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The correlation function of the complex modal contributions jh  and kh )3,2,1,( =kj  is defined as 
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where the asterisk * denotes the complex conjugate of vector. Substituting Eq. (4.7) in Eq. (4.8) and changing the 
orders of expected value and integral calculations gives 
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where )(2)( 0 τδπτ SRp = , which is the correlation function of the white noise process. 
 
According to the Eq. (4.5) and Eq. (4.6), the responses of the system are given by 
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The correlation function of the response is 
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Substituting Eq. (4.9) in Eq. (4.11) gives 
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Considering the following relationship: 
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the correlation function of the filtered white noise process in rock is solved as 
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5. CORRELATION FUNCTION OF THE MODIFIED KANAI-TAJIMI SPECTRUM MODEL 
 
The correlation function of the Hu spectrum can be obtained by random vibration analysis to the single- 
degree-of-freedom system subject to the seismic excitation with the spectral density function of Eq. (2.5) or 
correlation function of Eq. (4.13). 
 
The filter equations can be rewritten as 
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where )(tU&&  is the filtered white noise process with the correlation function given by Eq. (4.13); Txxu },{}{ &=  
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The modal expansion of displacement vector }{u  can be expressed as 
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where }{ jγ  and )(tq j  are the jth  complex mode and modal coordinate, respectively. 
 
The correlation function of ground acceleration is expressed as 
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where jr  is the jth  complex frequency, Dgg ir ωωζ ±−=2,1 , 21 ggD ζωω −= . 

 
The correlation function of complex modal response is 
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Substituting Eq. (4.13) in Eq. (5.6), and carrying out the integral calculation leads to 
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The coefficients in Eq. (5.7) are 
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Substituting Eq. (5.7) in Eq. (5.4) and Eq. (5.5), using Euler transform gives 
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in which the coefficients are respectively given as 
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Substituting Eq. (5.8) and Eq. (5.9) in Eq.(5.3) and simplifying the expressions as 
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in which 
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Eq. (5.10) is the expression of the correlation function of the Hu spectral model, which is the inverse Fourier’s 
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transform of Eq. (2.4). 
 
 
6. CONCLUDING REMARKS 
 
(1) The Hu spectral model is an improved scheme to the Kanai-Tajimi model, and essentially the filtered color 
noise process, thus it is definite in physical conception. The singular point in zero frequency is eliminated due to 
the Hu model so that the variances of the ground velocity and displacement are finite. The Hu spectral model is 
consistent well with actual earthquake-induced ground motion. 
 
(2) The low frequency contents of the earthquake ground motion are modified by the low frequency control 
factor cω  in the Hu spectral model. The low frequency contents decreases with the increase of cω , and the Hu 
spectral model can be used for the stochastic seismic response analysis of the structures with low frequency as 
well as medium and high frequency. 
 
(3) The correlation function is the important characteristic of the stationary stochastic process in time domain, 
by which other statistical properties can be obtained conveniently. The Hu spectral model is a twice filtered 
white noise process, so the correlation function can be deduced through the filter equations in time domain. 
These results provide a basis for random response analysis of the seismic structures in time domain. 
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