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ABSTRACT:

The analysis of seismic wave propagation and amplification in complex geological structures raises the need for
efficient and accurate numerical methods. The solution of the elastodynamic equations using boundary element
methods (BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the elastodynamic equa-
tions have established that the Fast Multipole (FM) method reduces the complexity of a BEM solution toN log N
per GMRES iteration. The present Article addresses the extension of the FM-BEM strategy to 3D multi-domain
elastodynamics in the frequency domain. Using this FM-accelerated BEM it is now possible to study the prop-
agation of seismic waves in 3-D alluvial basins at a much lower cost than with standard BEM. Validations are
performed for canonical basins and comparisons to previousworks are proposed. It shows the efficiency and
accuracy of the fast BEM formulation proposed.
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1 INTRODUCTION

Seismic site effects are a major concern for earthquake engineering because very large local amplifications of seis-
mic motions may occur. Such phenomena can strengthen the surface ground motion and increase the consequences
on structures and buildings. To analyze site effects, it is possible to consider modal approaches or directly investi-
gate wave propagation phenomena. The importance of 2D and 3Dsimulations is well recognized throughout the
literature. A lot of studies have been devoted to the 2D case.The 3D case is currently a very attractive field of
research because of the increase of the speed and capabilities of computers. To compute seismic wave propagation
in alluvial basins, various numerical methods have been proposed: the series expansions, the multipolar expansions
of wave functions, the finite element method, the finite differences, the spectral elements method, the boundary
element method [BEM, see e.g. Bonnet, 1999, Dangla et al., 2005]. The main advantage of the latter is that only
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the domain boundaries (and possibly interfaces) are discretized, leading to a reduction of the number of degrees
of freedom (DOFs). However, the standard BEM leads to fully-populated, non-symmetric matrices. This entails
high computational costs, both in CPU time (O(N2) per iteration using an iterative solver such as GMRES) and
memory requirements (O(N2)), whereN denotes the number of DOFs of the BEM model.

In other research areas where the BEM is used (electromagnetism, acoustics,. . . ), considerable speedup of solu-
tion time and decrease of memory requirements has been achieved, over the last decade, through the develop-
ment of the Fast Multipole Method (FMM) [Nishimura, 2002]. This method is known to reduce the CPU time to
O(N log2 N) per iteration. So far, very few studies have been devoted to the FMM in elastodynamics (see, how-
ever, [Fujiwara, 2000] for the frequency-domain case and [Takahashi et al., 2003] for the time-domain case). The
present article improves on the methodology of [Fujiwara, 2000] by incorporating recent advances of FMM imple-
mentations for Maxwell equations (e.g. [Darve, 2000]), which allow to run BEM models of much larger size.This
paper is organized as follows. First, the main features of the elastodynamic FMM-BEM formulation are concisely
presented. Then, numerical efficiency and accuracy are assessed on numerical results obtained for problems with
well-known solutions. Finally, the efficiency of the present FMM-BEM is demonstrated on seismology-oriented
examples.

2 STANDARD AND FAST MULTIPOLE ACCELERATED BOUNDARY ELE-
MENT METHOD

2.1 Single-region boundary element method

Let Ω denote a region of space occupied by an isotropic elastic solid characterized byµ (shear modulus),ν (Pois-
son’s ratio) andρ (mass density). Assuming a time-harmonic motion with circular frequencyω, the displacement
can be written:

u(x, t) = ũ(x, ω)eiωt (2.1)

In the following, the factoreiωt is systematically omitted and the notationu is used instead of̃u. Assuming the
absence of body forces, the displacementu is given at an interior pointx ∈ Ω by the well-known representation
formula:

uk(x) =

∫

∂Ω
[ti(y)Uk

i (x,y;ω) − ui(y)T k
i (x,y;ω)] dSy (2.2)

wheret is the traction vector on the boundary∂Ω, andUk
i (x,y;ω) andT k

i (x,y;ω) denote thei-th components
of the elastodynamic fundamental solution, i.e. of the displacement and traction, respectively, generated aty ∈ R

3
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by a unit point force applied atx ∈ R
3 along the directionk [Eringen and Suhubi, 1975]:

Uk
i (x,y;ω) =

1

4πk2
Sµ

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(|y − x|; kS)+

∂

∂xi

∂

∂yk

G(|y − x|; kP )
)

,

T k
i (x,y;ω) = µ

[ 2ν

1 − 2ν
δijδkℓ + δikδjℓ + δjkδiℓ

] ∂

∂yℓ

Uk
h (x,y;ω)nj(y),

k2
S =

ρω2

µ
, k2

P =
1 − 2ν

2(1 − ν)
k2

S

(2.3)

in whichG(r; k), defined by

G(r; k) =
exp(ikr)

4πr
(2.4)

is the free-space Green’s function for the Helmholtz equation with wavenumberkα corresponding to eitherP or S
elastic waves, andn(y) is the unit normal to∂Ω directed outwards ofΩ.

Whenx ∈ ∂Ω, a singularity occurs aty = x. With the help of a well-documented limiting process, the integral
representation (2.2) yields the integral equation, forx ∈ ∂Ω :

cik(x)ui(x) =

∫

∂Ω
ti(y)Uk

i (x,y;ω)dSy − (P.V.)
∫

∂Ω
ui(y)T k

i (x,y;ω)dSy (2.5)

where (P.V.) indicates a Cauchy principal value (CPV) singular integral and thefree-term cik(x) is equal to0.5δik

in the usual case where∂Ω is smooth atx. Equation (2.5) may be recast into alternative, equivalentregularized
forms which are free of CPV integrals [Dangla et al., 2005].

The numerical solution of boundary integral equation (2.5)is based on a boundary element (BE) discretization of
the surface∂Ω and boundary traces(u, t), leading to the system:

[H]{u} + [G]{t} = 0, (2.6)

where[H] and[G] are fully populated, nonsymmetric, matrices and vectors{u}, {t} gather the displacement and
traction degrees of freedom (DOFs). In this work, linear three-noded triangular boundary elements are used, to-
gether with a piecewise-linear continuous (i.e. isoparametric) interpolation for the displacements and a piecewise-
constant interpolation of tractions. Upon introduction ofboundary conditions, the matrix equation (2.6) is recast
in the form:

[K]{v} = {f}, (2.7)

where theN -vector{v} collects the sought degrees of freedom (DOFs), while theN × N matrix of influence
coefficients[K] contains the columns of[H] and[G] associated with the unknown components.

BEM matrix equations such as (2.7) are here solved iteratively using the GMRES algorithm. The influence matrix
[K] is fully-populated. With reference to (2.7), each GMRES iteration requires one evaluation of[K]{u} for given
{u}, a task requiring a computing time of orderO(N2) if either [K] is stored or[K]{u} is evaluated by means
of standard BEM numerical integration procedures. ThisO(N2) complexity, unacceptable for large BEM models,
can be lowered by resorting to fast BEM solutions techniquessuch as the Fast Multipole Method (FMM).
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2.2 Fast Multipole Method: principle

The goal of the FMM is to speed up the matrix-vector product computation required for each iteration of the
iterative solver applied to the BEM-discretized equations. Moreover, the governing BEM matrix is never explicitly
formed, which leads to a storage requirement well below theO(N2) memory required for holding it. Substantial
savings in both CPU time and memory are thus achieved.

In general terms, the FMM exploits a reformulation of the fundamental solutions in terms of products of functions
of x and ofy, so that (in contrast with the traditional BEM) integrations with respect toy can be reused when the
collocation pointx is changed. On decomposing the position vectorr = y−x intor = (y − y0)+r0−(x − x0),
wherex0 andy0 are two poles andr0 = y0 − x0 and invoking the Gegenbauer addition theorem, the Helmholtz
Green’s function is written as [Darve, 2000]:

G(|r|, k) = lim
L→+∞

∫

ŝ∈S

eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0)dŝ, (2.8)

whereS is the unit sphere ofR3 and thetransfer function GL(ŝ; r0; k) is defined in terms of the Legendre polyno-

mialsPp and the spherical Hankel functions of the first kindh
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑

0≤p≤L

(2p + 1)iph(1)
p (k|r0|)Pp

(

cos(ŝ, r0)
)

(2.9)

Then, the elastodynamic fundamental solution (2.3) is easily seen to admit representations of the form (2.8) with
GL replaced with suitably-defined (tensorial) transfer functions [Chaillat et al., 2008].

A 3D cubic grid of linear spacingd embedding the whole boundary∂Ω is then introduced. The FMM basically
consists of using decomposition (2.8), with the polesx0 andy0 being chosen as the cell centers, wheneverx and
y belong tonon-adjacent cubic cells. The treatment of such "FM" contributions exploits the multipole expan-
sions of the fundamental solutions (2.3), truncated at a finite L and in a manner suggested by their multiplicative
form. Whenx andy belong to adjacent cells, traditional BEM evaluation methods based on expressions (2.3)
and (2.4) are used. To improve further the computational efficiency of the FM-BEM, standard (i.e. non-FMM)
calculations must be confined to the smallest possible spatial regions while retaining the advantage of clustering
the computation of influence terms into non-adjacent large groups whenever possible. This idea is carried out by
subdividing cubic cells into eight smaller cubic cells. Newpairs of non-adjacent smaller cells, to which multipole
expansions are applicable, are thus obtained from the subdivision of pairs of adjacent cells. This is the essence
of the multi-level FMM, whose theoretical complexity isO(N log N) per GMRES iteration both for CPU time
and memory (see [Chaillat et al., 2008] for further details on the method and its implementation for single-domain
elastodynamic problems). This formulation will now be generalized to seismic wave propagation in alluvial basins.

2.3 Boundary Element-Boundary Element coupling strategy

In the case of multi-domain problems, the boundary of each subregionΩj generally contains boundary elements
and nodes, located onΓj, that belong only toΩj, and interfacial boundary elements and nodes belonging toΓij



The 14th World Conference on Earthquake Engineering
October 12-17, 2008, Beijing, China

for somei 6= j. The governing boundary integral equation can then be written for each zone. A system of matrix
equations for each zone is obtained. The matrix relations written for each of the individual zones can be assembled
for use in an overall analysis by considering the conditionsof displacement compatibility and equilibrium of the
traction components at all interfaces.

To build the discrete problem, piecewise-linear interpolation of displacements, based on three-noded triangular
boundary elements is used. Because of the equilibrium of thetraction, piecewise-constant interpolation of trac-
tions based on boundary elements are used. In the case of multi-domain problems, a boundary integral equation is
formulated for each subregionΩi (with material properties assumed homogeneous in eachΩi). The matrix-vector
products arising in each of these integral equations can be evaluated using the FM-BEM procedure for homoge-
neous media presented in the previous section. Each subregion is thus treated separately, with the help of a separate
octree.

3 Propagation and amplification of seismic waves in alluvialbasins.

In [Chaillat et al., 2008], the single-domain elastodynamic FMM has been checked for the case of the scattering
by an irregular surface of a plane P-wave with vertical incidence and normalized frequencykP a/π = 0.25 (with
ν = 0.25) against the results of [Sánchez-Sesma, 1983], and then applied to the same configuration with a higher
frequency (kP a/π = 5). In this section, the present implementation is checked inthe case of the propagation of
seismic waves in alluvial basins.

3.1 Diffraction of an incident plane P-wave by a single-layered semi-spherical basin

This first example is concerned with the diffraction by a semi-spherical alluvial basin (i.e. soft elastic inclusion)
of a plane P-wave of unit amplitude traveling vertically in an elastic homogeneous irregular half-space (Fig. 3.1).
Such a configuration may lead to a strong amplification of the seismic motion in soft alluvial deposits.

We investigate the motion at the surface of the alluvial basin Ω2, for the following values of the material parameters:
µ(2) = 0.3µ(1), ρ(2) = 0.6ρ(1), ν(1) = 0.25 andν(2) = 0.3. The normalized frequency is defined byk

(1)
P a/π, i.e.

in terms of the properties of the elastic semi-infinite medium Ω1. The size of the discretized free surface is chosen
equal toD = 5a (as in [Sánchez-Sesma, 1983]).

Table 3.1: Diffraction of an incident plane P-wave by a semi-spherical alluvial basin: data and computational
results

k
(1)
P a/π N l̄1; l̄2 CPU (s) / iter nb iter.
0.5 17, 502 3, 3 8 39
2 190, 299 5, 4 79 627

The surface displacements computed with the present multi-domain FMM are presented, along with corresponding
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Figure 3.1: Diffraction of an incident plane P-wave by a semi-spherical alluvial basin: notations
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Figure 3.2: Diffraction of an incident plane P-wave by a semi-spherical alluvial basin (left:k(1)
P a/π = 0.5, right:

k
(1)
P a/π = 2)

results from [Sánchez-Sesma, 1983] and [Delavaud, 2007], for k
(1)
P a/π = 0.5 (Fig. 3.2, left). The results are seen

to be in good agreement.

Additionally, the FMM allowed to perform computations for higher frequencyk(1)
P a/π = 2 (Fig. 3.2, right). In

Table 3.1, the number of DOFs and the leaf levelℓ̄i in each subdomainΩi are given for the meshes used, together
with the CPU time per iteration and iteration counts recorded. The last example indicates that the iteration count
significantly impacts the computational efficiency for problem sizes for which the CPU time per iteration and the
memory requirements are still moderate. An efficient preconditioning strategy is needed and will be addressed in
future investigations.
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3.2 Diffraction of an incident plane P-wave by a two-layered semi-spherical basin

The examples presented in section 3.1 were limited to a single-layered basin, whereas the present implementation
is in fact applicable to more general configurations featuring n subregions (n ≥ 1). To demonstrate this capability,
the diffraction of an incident plane P-wave by a heterogeneous semi-spherical basin is now considered for an
alluvial deposit composed of two layers (Fig. 3.3). The two layersΩ2 andΩ3 are made of different materials, with
mechanical properties defined so that the velocity contrastbetweenΩ1, Ω2 and betweenΩ2, Ω3 are the same:

ρ(2)

ρ(1)
=

ρ(3)

ρ(2)
= 0.6;

µ(2)

µ(1)
=

µ(3)

µ(2)
= 0.3; ν(1) = 0.25; ν(2) = ν(3) = 0.30 (3.1)

The thicknessh(2) andh(3) of the layersΩ2 andΩ3 are adapted to the wavelengths:

h(2)

λ
(2)
s

=
h(3)

λ
(3)
s

⇒ h(2) =

√
2a

(1 +
√

2)
; h(3) =

a

(1 +
√

2)
(3.2)

The mesh featuresN = 91, 893 DOFs. The normalized frequency isk
(1)
p a/π = 1. The computation takes248 iter.,

48 s/iter (ℓ̄1 = 4, ℓ̄2 = 3, ℓ̄3 = 3).
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Figure 3.3: Diffraction of an incident plane P-wave by a two-layered semi-spherical basin: notation.

In Figure 3.4, the results of the computation for the two-layered semi-spherical basin are compared to those for a
one-layered basin. The introduction of the layerΩ3 leads to stronger amplification, with shorter wavelengths,in
the basin.

4 Conclusion

In this article, a multi-level fast multipole multi-domainformulation has been proposed, based on previous works
on single-region FMM [Chaillat et al., 2008]. Comparisons with the analytical or previously published numerical
results show the efficiency and accuracy of the present implementation. The studies of seismic wave propagation
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Figure 3.4: Diffraction of an incident plane P-wave by a two-layered semi-spherical basin (k
(1)
p a/π = 1).

in canonical basins for higher frequencies than in previously published results show the numerical efficiency of
the method and suggest that it is suitable to deal with realistic seismological applications. The transient response
of 3-D basins has also been investigated to illustrate the large domain of application of the method. Moreover,
because the hypothesis of a linear elastic soil is often not sufficient, the extension of the present work to linear
viscoelasticty is under way.
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