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ABSTRACT : 
Based on the numerical simulation, the problem that the intrinsic mode functions (IMFs) decomposed by the 
empirical mode decomposition (EMD) in Hilbert-Huang transform (HHT) are not exactly orthogonal is 
presented. A new method based on the Gram-Schmidt orthogonalization method referred as the orthogonal 
empirical mode decomposition (OEMD) is proposed and the complete orthogonal intrinsic mode functions 
(OIMFs) are attained. The method is validated through the decomposition of a typical time history and 
demonstrated through the El Centro earthquake recording. The comparison between the Hilbert spectrum, the 
Hilbert marginal spectrum and the orthogonal Hilbert spectrum, the orthogonal Hilbert marginal spectrum of the 
El Centro earthquake recording showed that the latter can more faithfully and quantitatively characterize the 
signal energy distribution at different frequency components. 
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1. INTRODUCTION 
 
The Hilbert-Huang transform (HHT), builds on empirical mode decomposition (EMD) and Hilbert spectral 
analysis (HSA), developed by Huang et al. (Huang et al. 1998, 1999, 2003), can represent nonlinear and 
non-stationary data such as earthquake recordings. It can decompose any complicated date set via EMD into a 
finite, often small number of intrinsic mode functions (IMFs) that admit a well-behaved Hilbert transform. 
Compared with the Fourier decomposition which based on the harmonic functions and wavelet decomposition 
which based on the ‘mother’ wavelets, the EMD approach is fitter for analyzing the non-stationary data because 
it decomposes the signal based on the time scale of the signal itself with adaptive nature. Now the HHT method 
has been widely applied in many engineering domains such as earthquake engineering, system identification, 
damage detection and structural health monitoring etc. 
 
Huang et al. (2001) presented a new HHT-based spectral analysis approach and pointed out that it is the only 
spectral analysis method applicable to non-stationary and nonlinear data. The earthquake record from station 
TCU 129, at Chi-Chi, Taiwan, collected during the 21 September 1999 earthquake has been used to illustrate its 
capability. Furthermore, Loh et al. (2001) applied the HHT-based spectral analysis approach to identify 
near-fault ground-motion characteristics and structural responses. It can detect the time-varying system natural 
frequency and damping ratio through the seismic response data of structures. Zhang et al. (2003) investigated 
the rational of HHT for analyzing dynamic and earthquake motion recordings. The research illustrated that HHT 
is suited for analyzing non-stationary dynamic and earthquake motion recordings, which is better than the 
conventional Fourier data processing technique in extracting some features of recordings.  
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Yang et al. (2003a, 2003b) successfully applied the HHT method together with the random decrement technique 
(RDT) to identify the modal parameters of linear structures. The possibility of using the HHT method for modal 
parameter identification of linear system with closely spaced modes of vibration was investigated by Chen et al. 
(2002). The results showed that the HHT method is more capable of identifying modal parameters when the 
natural frequencies are close to each other than either the FFT-based method or the wavelet transform method. 
Yang et al. (2004) proposed an EMD-based approach to detect the damage time instants and damage locations 
by identifying the damage spike due to a sudden change of structural stiffness. Numerical simulation results 
demonstrate that the proposed method could also identify the damage time instant and damage location using 
the signal feature of damage spike.  
 
In order to ensure the completeness and orthogonality of this decomposition, all IMFs should reconstruct the 
original data set and they are orthogonal to each other. However, the EMD method proposed by Huang et al. 
(1998) is not guaranteed theoretically the orthogonality of IMFs. There is only almost numerically orthogonal 
among the IMFs. According to the numerical simulation in this study, the extent of orthogonality among the 
IMFs is actually bad and the energy leakage is severe. It’s necessity to improve this problem. In this study, a 
new method based on the Gram-Schmidt orthogonalization method referred as the orthogonal empirical mode 
decomposition (OEMD) is proposed to improve the degree of orthogonality among the IMFs and the complete 
orthogonal intrinsic mode functions (OIMFs) are attained. Then, the method has been validated through the 
decomposition of a typical time history and demonstrated through the El Centro earthquake recording. The 
comparison between the Hilbert spectrum, the Hilbert marginal spectrum and the orthogonal Hilbert spectrum, 
the orthogonal Hilbert marginal spectrum of the El Centro earthquake recording showed that the orthogonal 
Hilbert spectrum and Hilbert marginal spectrum can more faithfully and quantitatively characterize the signal 
energy distribution at different frequency components. 
 
 
2. EMPIRICAL MODE DECOMPOSITION 
 
The empirical mode decomposition can decompose any data set into several intrinsic mode functions (IMFs) by 
a procedure called sifting process. Suppose ( )X t  is the signal to be decomposed. By EMD, it can be expressed 
as the sum of n IMF components plus the final residue. More details can be referred Huang et al. (1998). 
 

 ( ) ( ) ( )
1

n

j n
j

X t c t r t
=

= +∑  (2.1) 

where ( )jc t = jth IMF component; and ( )nr t = final residue. 
 
It should be noted that the signals in above equation are all represented in consecutive form. However, the 
signals collected are generally discrete. Therefore, in order to clearly demonstrate the orthogonality of IMF and 
the process of the OEMD in next sections, one gives the signal in discrete vector expression, i.e. 
 

 ( ) { } ( ) ( ) ( ) ( ){ } { }1 2 1 2, , , , , , , , ,i N i NX t X X t X t X t X t X X X X⇒ = =  (2.2) 
 ( ) { } ( ) ( ) ( ) ( ){ } { }1 2 1 2, , , , , , , ,j j j j j i j N j j ji jNc t c c t c t c t c t c c c c⇒ = =  (2.3) 

 
 
3. ORTHOGONALITY OF INTRINSIC MODE FUNCTION 
 
To ensure the rigorousness of EMD, the IMFs from EMD should be completeness which means that the IMFs 
could reconstruct the original signal. From Eqn. 2.1, we know that the IMFs can theoretically reconstruct the 
original signal. In order to check the orthogonality of IMFs from EMD, Huang et al. (1998) defined an overall 
index of orthogonality TIO  and a partial index of orthogonality for any two components

jkIO , i.e. 
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Furthermore, we defined an energy index to indicate the orthogonality of IMF components. The energy of 
original signal xE  and the energy of each IMF component 

jE （ 1, , 1j n= + ）are given by 
 

 ( )2 2
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NT

x i
i

E X t dt X
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0
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( 1, , 1)
NT
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If the IMF components from EMD are exactly orthogonal to each other, the value of TIO  and 

jkIO  should be 

zeros, the total energy of decomposed signal totE  should be invariable (i.e. 1

1

n

tot j x
j

E E E
+

=

= =∑ ) and the energy 

leakage between any two IMF components 
jkE  should be zero, i.e. 

( ) ( )
0

1
0 ( , 1, , 1; )

NT

jk j k ji ki
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E c t c t dt c c j k n j k
=

= = = = + ≠∑∫ . 

 
Generally, because the IMFs from EMD aren’t theoretically orthogonal, the value of orthogonality index is 
about from 10-2 to 10-3. Therefore, Huang et al. (1998) considered that there is almost orthogonal among IMFs. 
However, it should be noted that the extent of orthogonality isn’t so good for the present computer precision. 
The numerical simulation in next sections will demonstrate that owing to the minor error in orthogonality that 
Huang et al. (1998) considered, there is actually severe energy leakage when applied EMD for the 
decomposition of time histories. In order to ensure the exact orthogonality of IMFs from EMD and no energy 
leakage due to EMD, a new method based on the Gram-Schmidt orthogonalization method referred as the 
orthogonal empirical mode decomposition (OEMD) will be proposed to improve the problem in the following. 
 
 
4. THE ORTHOGONAL EMPIRICAL MODE DECOMPOSITION 
 
Through the orthogonal processing for the IMFs from EMD, one obtains the complete orthogonal IMF 
components, the procedure listed as follow. (1) Using EMD, signal ( )X t  is expressed as the sum of n IMF 

components ( )jc t ( 1, 2, ,j n= ) and the final residue ( )nr t , i.e. ( ) ( ) ( )
1

n

j n
j

X t c t r t
=

= +∑ . （2） First, ( )1c t  is 

defined as the first orthogonal IMF (OIMF) component of signal ( )X t , where ( ) ( )1 1c t c t= . （3）As we know 
from the EMD, there isn’t theoretically guarantee that ( )2c t  is orthogonal to ( )1c t . Therefore, in order to get 
the second OIMF component of ( )X t , one may adopt this measure which removes partial ( )1c t  from ( )2c t . 
Then, ( )2c t  is given by 

 ( ) ( ) ( )2 2 21 1c t c t c tβ= −  (4.1) 
 
where， ( )2c t  is the second OIMF component of ( )X t  which is orthogonal to ( )1c t , 

21β  is defined as the 
orthogonality coefficient between ( )2c t  and ( )1c t . Producing ( )1c t  and performing integral transform about 
time t of both sides of Eqn.4.1 and using the orthogonal characteristic between ( )2c t  and ( )1c t , it can be shown 
that 

21β  can be deduced as follow. 
 

 ( ) ( ) ( ) ( ) ( )2
1 2 2 1 21 10 0 0

0
T T T

c t c t dt c t c t dt c t dtβ= − =∫ ∫ ∫  (4.2) 
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（4）Adopting the same measure proposed above, by removing all the former j OIMF components from the 
(j+1)th IMF component of ( )X t  from EMD, it can be obtained the (j+1)th OIMF component of ( )X t . 

( )( )1 2, , 1jc t j n+ = −  is given by 
 

 ( ) ( ) ( )1 1 1,
1

j

j j j i i
i

c t c t c tβ+ + +
=

= −∑  (4.5) 

 
Producing ( ) ( )kc t k j≤  and performing integral transform about time t of both sides of Eqn.4.5 and using the 
orthogonal characteristic between ( )kc t  and ( ) ( )ic t i k≠ , it can be shown that 

1,j iβ +
 can be deduced as follow. 
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The above orthogonal processing process for IMF components is referred as the orthogonal empirical mode 
decomposition (OEMD). After performing some algebraic operation, ( )X t  is expressed as, 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * *
1 2 3 1

1 1

n n

j n n n j n j j n
j j

X t c t c t c t c t c t c t r t c t r t a c t r t−
= =

= + + + + + + + = + = +∑ ∑  (4.10) 

Where ( ), 1, 2, ,
n

j i j
i j

a j nβ
=

= =∑ ， ( ), 1i j i jβ = = . 

 
It’s obviously shown from the above procedure that the IMF components ( ) ( )1, 2, ,jc t j n=  are orthogonal to 
each other. The algebraic operation for each component ( )jc t  will not change its orthogonality among 
components. Therefore, the components ( )( )* 1, 2, ,jc t j n=  are also orthogonal to each other. Thus, ( )X t  is 
expressed as the sum of n OIMF components ( ) ( )* 1, 2, ,jc t j n=  and the final residue ( )nr t . 
 
It should be noted that the OEMD method don’t change the extraction process of IMF from EMD, it’s actually 
an orthogonal processing and regroup process to IMFs in numerical. Furthermore, owing to the almost 
orthogonality existed among IMFs, the OEMD for extracting OIMF proposed in this study can not only 
basically guarantee the attribute of intrinsic mode function, but also ensure the exact orthogonal among OIMFs. 
More details can be referred to Huang (2007). The validity of OEMD will be demonstrated in the following. 
 
 
5. NUMERICAL SIMULATION 
 
5.1. Validity of Orthogonality Index 
 
In order to illustrate the real precision of orthogonality indexes in the present computer level, one takes three 
sine waves with different frequency into account, i.e., ( ) sin(2 )j jx t f tπ= , 1, 2, 3j = . Where,

1 1f Hz= , 
2 2f Hz= , 

3 3f Hz= , duration 5T s=  and sampling frequency 100sf Hz= . According Eqn.3.1 and Eqn.3.2, the calculated 
orthogonality indexes among IMFs are 
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-17 -17

-16

0.5 8.169 10 5.847 10
0.5 2.430 10

symmetry 0.5
IO

⎡ ⎤× ×
⎢ ⎥= ×⎢ ⎥
⎢ ⎥⎣ ⎦

 and -162.555 10TIO = ×  

 
As we know, the above three sine waves are theoretically orthogonal to each other. Therefore, the calculated 
orthogonality indexes should be zeros. Howerver, because of the present computer precision level, the value of 
orthogonality indexes are about in the magnitude of 10-16 which shows that it will be exactly orthogonal when 
the orthogonality index equals approximately to this magnitude. 
 
Furthermore, for validation the validity of energy index representing the orthogonality , one considers the signal 
constructed by these above three sine waves, i.e. 3

1

( ) ( )j
j

x t x t
=

= ∑ . According Eqn.3.3 and Eqn.3.4, some energy 

indexes have been calculated, where signal energy 750xE = , sine waves energy ( )250 1,2,3jE j= = . Based on the 

results that signal total energy 3

1
tot j x

j

E E E
=

= =∑  and cross energy among sine waves 0 ( , 1,2,3; )jkE j k j k= = ≠ , 

one can conclude that the energy index can also reflect the orthogonality of data. 
 
 
5.2. Orthogonality Validity of IMF from EMD and OEMD for a Typical Time History 
 
One considers a typical time history, ( )

3

1

sin 2j j
j

X t a f tπ
=

= ∑ , where 
1 1f Hz= , 

2 5f Hz= , 
3 10f Hz= , 

1 2 3 1a a a= = = , 

duration 5T s=  and sampling frequency 100sf Hz= . The temporal waveform is shown in Figure 1. 
 

   
                               （a）results from EMD         （b）results processed by OEMD 

Figure 1 Typical time history                    Figure 2 IMF components and residue 
 
One gets 5 IMF components c1 to c5 and 1 residue c6 (shown in Figure 2(a)) by EMD to the above time history. 
Applying OEMD to these five IMF components, we get 5 OIMF components c1 to c5 and 1 residue c6 (shown 
in Figure 2(b)).  
 
Table 5.1 shows the orthogonality indexes of IMFs from EMD and the orthogonality indexes of OIMFs 
processed by OEMD in which the numbers in upper triangle blanks represent the orthogonality indexes of IMFs 
and the numbers in lower triangle blanks represent the orthogonality indexes of OIMFs processed by OEMD. 
Table 5.1 shows the orthogonality of OIMFs is better than the orthogonality of IMFs from EMD and the 
magnitude of the orthogonality indexes of OIMFs is less than 10-15, whereas the magnitude of the orthogonality 
indexes of IMFs is more than 10-5. Furthermore, the total orthogonality index TIO  is 0.06633 by EMD and the 
total orthogonality index TIO  is reduced to 0.0005077 when IMFs has been processed by OEMD. All these 
results demonstrate the extent of orthogonality of IMFs has been markedly improved and these OIMFs 
processed by OEMD may be treated as exactly orthogonal to each other. 
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It should be noted that c6 is the residue in Table 5.1 which isn’t orthogonal to all the former IMFs. So, compared 
with the orthogonality indexes between c6 with the other IMFs, the orthogonality indexes between c6 with the 
other OIMFs haven’t been improved even been declined. However, due to the amplitude of c6 is so small that it 
has only little impact on the total orthogonality index TIO . 
 

Table 5.1 Orthogonality index of IMF / OIMF components 
IMF/OIMF c1 c2 c3 c4 c5 c6 

c1 0.5 1.11×10-1 3.86×10-3 8.92×10-5 3.21×10-5 7.90×10-5 
c2 8.57×10-17 0.5 4.85×10-2 2.05×10-4 8.63×10-5 1.81×10-4 
c3 4.79×10-18 4.45×10-18 0.5 1.53×10-3 5.21×10-4 1.23×10-3 
c4 3.31×10-19 1.58×10-19 1.75×10-18 0.5 3.00×10-1 1.82×10-3 
c5 3.61×10-20 3.75×10-20 8.02×10-20 1.56×10-16 0.5 6.11×10-2 
c6 1.03×10-4 1.24×10-4 1.23×10-3 1.67×10-1 1.72×10-1 0.5 

 
Table 5.2 shows the value of signal energy Ex, the value of IMF or OIMF component energy (i.e., Ej, j=1,2,…,6) 
and the sum of IMF or OIMF component energy Etot . The error between the signal energy Ex and the sum of 
IMF component energy Etot is up to 11.69% which illustrates the extent of orthogonality among IMFs is bad. 
Whereas the error between the signal energy Ex and the sum of OIMF component energy Etot is only 0.09% 
which further shows the extent of orthogonality among OIMFs is good and the OEMD method have remarkably 
improved the orthogonality among OIMFs and these OIMFs may be treated as exactly orthogonal. 
 

Table 5.2 Signal energy, IMF component energy and sum of IMF component energy 
IMF/OIMF Ex E1 E2 E3 E4 E5 E6 Etot error/％

EMD 265.84 136.66 259.77 0.0076 0.0020 0.0119 662.2914 -11.69

OEMD 
750

251.19 240.93 258.49 0.0134 0.0009 0.0119 750.6410 0.09%

 
It can be seen that the first three IMF components (i.e., c1 to c3) shown in Figure 2(a) can represent above three 
sine waves which constructed the typical time history. Table 5.2 shows the energy of the first three IMF 
components are 251.19, 240.93 and 258.49 respectively which is comparable with the energy value of the ideal 
sine waves (i.e., 250). Furthermore, the three sine waves and the first three OIMF components processed 
through OMED are comparably drawn in Figure 3. Figure 3 shows they are almost identical except in end zones. 
The little error is due to the end effect of EMD and it can be eliminated through the mirror extend to the original 
signal. 
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Figure 3 Comparison between the sine waves     Figure 4 El Centro earthquake recording 

with OIMF components 
 
6. APPLICATION IN EARTHQUAKE MOTION RECORDING 
 
Figure 4 shows the El Centro earthquake recording. One gets 8 IMF components c1 to c8 and 1 residue c9 
(shown in Figure 5(a)) by EMD to this recording. Applying OEMD to these eight IMF components, we get 8 
OIMF components c1 to c8 and 1 residue c9 (shown in Figure 5(b)). The orthogonality indexes of IMFs from 
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EMD and the orthogonality indexes of OIMFs processed by OEMD are been calculated. (because of the length 
of paper, they aren’t listed here. It can be referred to Huang (2007)). The value of orthogonality indexes 
among IMF components is more than 10-4 and the value of orthogonality indexes among OIMF components is 
less than 10-16. Table 6.1 shows the signal energy, each IMF or OIMF component energy and the sum of IMF or 
OIMF component energy. There is big difference between the signal energy with the sum of IMF component 
energy, it is up to 43.05％. Whereas the error between the signal energy with the sum of OIMF component 
energy is minor, it is only 0.18%. Furthermore, the calculated overall orthogonality index of IMF and OIMF 
components are 0.3992 and 0.001626 respectively. All these results demonstrate the OEMD method can 
remarkably improve the orthogonality of IMF, get completely orthogonal IMF components and reduce the 
energy leakage introduced by EMD. 
 

     
（a）results from EMD                （b）results processed by OEMD 

Figure 5 IMF components and residue 
Table 6.1 Signal energy, IMF component energy and sum of IMF component energy 

 Ex E1 E2 E3 E4 E5 E6 E7 E8 E9 Etot error /%

EMD 1.8771 2.6763 2.8189 0.5072 0.1943 0.054 0.0367 0.0007 0.0025 8.1678 43.05 

OEMD 
5.7098 

0.1342 2.5577 2.3026 0.4488 0.1967 0.0388 0.0380 0.0006 0.0025 5.7200 0.18 

 
Figure 6(a) shows the Hilbert spectrum of the El Centro earthquake recording. Figure 6(b) shows the Hilbert 
spectrum for OIMF components of the El Centro earthquake recording which designated as the orthogonal 
Hilbert spectrum. Compared with these two figures, we can see that the total energy represented in Figure 6(b) 
is less than the total energy represented in Figure 6(a) which is consistent with the result listed in Table 6.1. 
 
Figure 6(c) shows the normalized Fourier amplitude spectrum (NFAS), the normalized Hilbert marginal 
spectrum (NHMS) and the normalized Hilbert marginal spectrum for OIMF which is designated as the 
normalized orthogonal Hilbert marginal spectrum (NOHMS) of El Centro earthquake recording. Compared the 
NFAS with the NHMS and the NOHMS, one can conclude that in low-frequency band the energy distribution of 
NHMS and NOHMS is higher than the energy distribution of NFAS. Compared the NHMS with the NOHMS, 
one can conclude that the value of the NHMS is larger than the value of the NOHMS whenever in 
low-frequency band or in high-frequency band. This phenomena shows the sum of IMF components energy is 
larger than the sum of OIMF components energy which is consistent with the result listed in Table 6.1. 
 
 
7. CONCLUSIONS 
 
In this paper, firstly, the problem that the intrinsic mode functions (IMFs) decomposed by the empirical mode 
decomposition (EMD) in Hilbert-Huang transform (HHT) are not exactly orthogonal is presented through the 
numerical simulation. Then, a new method based on the Gram-Schmidt orthogonalization method referred as the 
orthogonal empirical mode decomposition (OEMD) is proposed and the complete orthogonal intrinsic mode 
functions (OIMFs) are attained. The validity of the OEMD method is validated through the decomposition of a 
typical time history. The orthogonality index and the energy index are all used to demonstrate the improvement 
of the orthogonality of IMF components. The application to the El Centro earthquake recording shows the 
OEMD method is promising. The comparison between the Hilbert spectrum, the Hilbert marginal spectrum and 
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the orthogonal Hilbert spectrum, the orthogonal Hilbert marginal spectrum of the El Centro earthquake 
recording showed that the latter can more faithfully and quantitatively characterize the signal energy distribution 
at different frequency components. 
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Figure 6 Hilbert spectrum and Hilbert marginal spectrum El Centro earthquake recording 
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