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ABSTRACT 
 

Spatial distribution of ground motion data of recent earthquakes unveiled some features of peak 
ground acceleration (PGA) attenuation with respect to closest distance to the fault (R) that current 
predictive models may not effectively capture. As such, (1) PGA remains constant in the near-fault 
area, (2) may show an increase in amplitudes at distances of about 3-10 km from the fault-rupture, (3) 
attenuates with slope of 1/R and faster at farther distances, (4) and intensifies at certain distances due 
to basin effect (if basin is present). A new PGA attenuation model is based on records from shallow 
crustal earthquakes compiled in the Next Generation Attenuation (NGA) database with a number of 
additions from recent Californian and worldwide events. A novel feature of the predictive model is its 
new functional form structured on the transfer function of a single degree of freedom oscillator. In 
addition, a new PGA-based predictive model was developed for PGV and 5% damped pseudo spectral 
acceleration (SA) ordinates of free-field horizontal component of ground motion.  

KEYWORDS: Response spectrum, Near-field, Ground motion prediction, Site effects, Spectral 
shape. 

1. PREDICTIVE MODEL FOR PGA  

Spatial distribution of ground motion data recorded in the proximity of the earthquake fault zones 
(Parkfield 2004, Imperial Valley 1979, Chi-Chi 1999, Loma Prieta 1989 and Northridge 1994) 
revealed important attenuation characteristics of PGA with respect to distance from the source as: (1) 
PGA remains constant in the near-fault area, (2) it exhibits a bump (an increase in amplitude) or a 
turning point at certain distance (about 3-10 km) from the fault surface, (3) it attenuates with slope of 
R-1 and faster at larger distances, (4) its amplitudes can be amplified at certain distances, for example 
as a result of basin effect.  

The well-known transfer function of a single degree of freedom (SDF) oscillator has analogous 
characteristics in a way that it remains constant at low frequencies (f), attenuates proportionally to f -2 
at high frequencies and may have a resonance (bump) around the natural frequency, f0 depending 
upon damping, D0. Based on this analogy, a conceptual approach was suggested in which ground 
motion parameters are treated as an output of cascading filters (with distance R being equivalent to 
square of frequency, f 2), whereby each filter is a mathematical expression used to simulate a certain 
physical phenomenon (Graizer and Kalkan, 2007). Accordingly, the first filter has a response 
characteristic with constant level at very short fault distances, a bump or a turning point around R0 
(depend upon magnitude) and a decrease proportional to R-1. The second filter can have two different 
settings depending upon damping: D1 = 0.65 (no bump) or lower damping D1~0.40 (with a bump at 
around R1). Utilizing second filter with parameter D1 = 0.65 essentially does not affect attenuation of 
PGA at distances shorter than R1, and only affects attenuation slope. By lowering the damping 
parameter this secondary filter can successfully capture basin effect by slightly amplifying ground 
motions in the near-field and more at distances around R1. The second settings also result in faster 
attenuation R-1.5 at distances more than the threshold distance R1. Similar to the basin effect, filter can 
be tuned to model possible bump on the attenuation curve due to effects similar to reflection from 
Moho surface at distances of about 50-60 km from the source (Somerville and Yoshimura 1990). 
Attenuation of seismic waves is a combined effect of geometric spreading, reflection, scattering and 
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other phenomena. Those complicated processes are in a way “natural filtering” of wave amplitudes. 
Thus, our approach of using cascading filters in attenuation modeling takes its spirit from this natural 
process, and each filter acts independently to simulate a certain physical effect. The developed model 
uses moment magnitude MW as a magnitude measure (henceforth, referred as M), and closest distance 
to the fault R (referred as “fault distance”) as a distance measure. It is structured on the NGA database 
(Stewart et al., 2008) with a number of additions mainly from recent California earthquakes. 
Specifically, almost two thirds of data utilized in this study comes from the NGA data set. This 
representation resembles the digital signal processing and allows creating a system with desired 
response. The resultant response in fact is a multiplication of transfer functions of each individual 
filter accounting for different effects in the arithmetic space. In natural logarithmic space, the 
attenuation formula can be written as: 

( ) [ ] [ ]1ln Y = ln G(R) +ln G (R)                      (1) 
    
or it can be expanded into the following form: 

2 2 2 2
0 1

0 0 1 1

( ) ( ) 0.5 [(1 ) 4 ] 0.5 [(1 ) 4 ] InY
R R R Rln Y ln A ln D ln D
R R R R

σ= − − + − − + +         (2) 

where σInY  is the total standard deviation of the equation. Each estimator parameter (i.e., A 
(amplification coefficient), D0, R0 and D1, R1) in Equation 2 is explained next.  

1.1. Physical Interpretation of R0 and D0 

For the SDF oscillator, f0 refers to the natural frequency. In our attenuation formulation, it 
corresponds to a corner distance (R0) where the highest ground motion (bump) or a turning point is 
observed. R0 is clearly a function of earthquake magnitude. Based on earthquake data corner distance 
exibits a linear function of magnitude  

0 4 5R c M c= +                                         (3) 
where c4 and c5 are the estimator coefficients. Equation 3 implies that for larger magnitudes, turning 
point on attenuation curve occurs at farther distances. Certain analogy can also be seen between 
corner distance and the corner frequency in Brune’s model (1970, 1971) where corner frequency 
depends upon the size of the earthquake. 

D0 is another important parameter and quantifies the intensity of bump on the attenuation curve. 
Initial findings demonstrate that it is a function of magnitude reaching minimum with D0 = 0.4 
(producing a significant bump) for M 6.0 – 6.5 and being higher at M<5.0 and M>7.0 (much lower or 
no bump) (Eq. 4)  

0 6 7 8cos( )D c c M c c9= + +                                    (4) 
c6, c7, c8 and c9 are again the estimator coefficients. Relative level of bump decreases for larger and 
smaller magnitudes. For magnitudes larger than 7.5, bump saturates.  

1.2. Magnitude and fault-style scaling 

In the initial stage of analyses, variations in site conditions were not distinguished. This stage is 
essential to obtain the main tendencies in the attenuation of ground motion. Based on the findings, the 
following scaling function, A(M,F) is proposed:  

1 2( , ) [ arctan( ) ]A M F c M c c F3= + +                               (5) 

where c1, c2 and c3 are the estimator coefficients obtained from nonlinear regression, and F represents 
scaling due to style of faulting. Scaling factor reflects saturation of amplitudes of ground motion with 
increasing magnitudes. The scaling function is actually calibrated for 4.9 < M < 7.6. It may need 
additional adjustment for lower and larger magnitudes.  

  



In this study, style of faulting is considered to be a simple scale factor. According to the results of 
Sadigh et al. 1997, Campbell and Bozorgnia (in Stewart et al., 2008), reverse-fault events create 
ground motions approximately 28 percent higher than those from crustal strike-slips. Following this 
finding, we used F = 1.00 for strike-slip and F = 1.28 for reverse faults. A limited number of normal 
fault data points (= 15) in our data set did not allow us to constrain the fault parameter for this 
particular mechanism, therefore normal fault data points were treated in the same category as strike-
slip faulting.  

1.3. Shallow site conditions  

In the light of available studies (a list of references is given in Graizer and Kalkan, 2007), we adopt 
linear site amplification that can be formulated in natural logarithmic space as  

30( )  site v S AF b ln V V= ⋅                              (6) 
which is the equivalent form of linear site correction expression provided by Boore et al. (1997). In 
the linear site amplification formula suggested by Boore et al. (1997) bv = -0.371, whereas our 
estimates yield bv = -0.24. Similar to the results of Field (2000), our attenuation model exhibits less 
amplification as the VS30 decreases compared to stiff site conditions.  

1.4. Attenuation equation 

Examples of application of the model are shown in Figure 1. Its estimator parameters were found 
through two-stage regression on compiled dataset that includes 2583 PGA measurements. In the first 
stage of regression, magnitude and distance dependency on attenuation characteristics were evaluated, 
while in the next stage site and basin effects were incorporated. The final parameters shown in Figure 
2 are valid for magnitude range of 4.5 < M < 7.6 and a distance range up to 200 km considered in this 
study. The total standard deviation (σInY) of predictions was calculated as 0.552 comparable with most 
recent attenuation relations (Stewart et al., 2008).  

1.5. Sediment depth basin effect 

Basin effect significantly impacts wave field at distances of 30-50 km and more when deep 
sedimentary basin is present (Lee et al., 1995; Campbell, 1997). In most cases it is associated with 
large amplitude surface waves. We model this effect by applying second filter. Similar to the first 
filter, the transfer function of the second filter is determined by the two parameters: distance R1 and 
damping D1. In this case, R1 describes the area of bump, and D1 describes its amplitude (low damping 
D1 produces higher amplitudes of bump) (see G3 in Figure 2). If sediments thickness is low, basin 
effect can be neglected, and D1 in this case can be taken as 0.65-0.70 (no bump). Application of the 
second filter with this value of D1 results in a change of slope at distances larger than R1 only. 
Attenuation function will decay proportionally to R-1.5 (unlike R-1 decay produced by the G2 filter in 
Figure 2).  

In general, we envision damping parameter of the second filter (D1) to be a smooth function of basin 
depth (thickness of sediment layer). But in our first approximation, we made a simplifying 
assumption considering basin effect to be the same for all depths of sediments (Z) more than 1 km.  

1

0.65 for 1 km
0.35 for 1 km

Z
D

Z
<⎧

= ⎨ ≥⎩
     (7)   

In general, we expect D1 to be decreasing smoothly from 0.7 to 0.3-0.4 and saturating with the 
increase of thickness of sediments (we plan to study this effect later). The near-field ground motion 
attenuation is defined by one filter with D0 and R0. Damping D0 describes level of amplification 
(bump) in the near-field. The first filter describes behavior of the attenuation function up to the 
distances of about 50 km, and is mostly constrained by earthquake source (magnitude in first 
approximation). The second filter modifies the behavior of the attenuation function according to the 

  



wave propagation path. It reflects influence of relatively large-scale sediment effects on the 
attenuation function.  

1.6. Comparison with recorded data and attenuation relationships 

Prior to comparisons with current attenuation relationships, performance of the proposed attenuation 
model (Figure 2) is examined through comparisons with actual recorded data. Figure 1 displays 
comparisons of our predictions with one-to-one correspondence to the actual recorded PGA data from 
2 earthquakes. Performance of the attenuation model in predicting the recorded data is tested against 
four commonly used attenuation relationships of Abrahamson & Silva (1997), Boore et al. (1997), 
Campbell (1997) and Sadigh et al. (1997). Comparisons with the actual PGA data show that at least 
for Chi-Chi (M 7.6), Northridge (M 6.7), Imperial Valley (M 6.5) and Parkfield (M 6.0) earthquakes 
our attenuation curves produce good predictions compared to others (comparisons with other events 
are given in Graizer and Kalkan, 2007).  

2. PGA-BASED PREDICTIVE MODEL FOR SPECTRAL ACCELERATION 

Udwadia and Trifunac (1973) demonstrated the correlation between Fourier and response spectra by 
developing a concept of damped Fourier spectra. This approach shows that the correlation is complex 
and does not result in approximation of response spectrum with certain mathematical functions. We 
used empirical approach and found out that the summation of a modified lognormal probability 
density function [F1(T)] with altered SDF oscillator transfer function [F2(T)] provided the desired 
shape and also enough flexibility to fit into wide range of spectral shape of real recordings (Figure 3). 
Each one of these functions simulates certain spectral behavior, for that reason their unification [F(T) 
= F1(T) + F2(T)] results in a powerful predictive model (Figure 4). By summing F1(T) and F2(T), an 
approximation function of spectral shape—SA(T)/PGA—denoted as SAnorm (“norm” stands for 
normalized), is obtained: 

2
30

1ln( ) ( , , )1 2 2
2 ( , ) 2

30
,0 ,0

( / , , ) ( , ) 1 ( ) 4 ( )
ST M R V

S M R
norm S sp

sp sp

T TSA T M R V I M R e DT T

μ
ζ

−+⎛ ⎞
− ⎜ ⎟

⎝ ⎠ ζ
⎡ ⎤⎛ ⎞= + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

   (8)         

where is a function of magnitude, distance and site condition. In Figure 3, both 
F1(T) and F2(T) and their summations (i.e., Eq. 8) are plotted against the average spectral shape from 
the Chi-Chi earthquake. Parameter “ζ ” controls the slope of spectral shape decay at long periods. Eq. 
8 with ζ = 1.0 results in good match up to period of about 3 seconds, beyond that there is a notable 
misfit, and average curve is overestimated. This tendency, also observed for other events, is corrected 
by increasing the order of ζ to 1.5. Faster decay of ζ = 2.0 seems to produce underestimation at long 
periods (Figure 3). Estimating the slope of attenuation of the response spectrum at long periods may 
require further studies and more uniformly (from stand point of long-period filter cutoff) processed 
dataset, because many strong-motion records have been processed with long-period cutoff at 3-5 
seconds. Corrected records in the PEER-NGA strong-motion database were processed using 5-pole 
Butterworth filter at the long-period end and 4-pole Butterworth filter at the short-period end (Stewart 
et al., 2008). It translates into influence on the long-period region of the response spectra by the data 
processing procedure (Graizer and Kalkan, 2008).  

,0 30( , , )sp ST f M R V=

As shown in Figure 3, average spectrum has different decay before and after its predominant (peak) 
period. By combining F1(T) with F2(T), such difference in slope can be adequately simulated. 
Function F2(T) constrains the approximation function to unity at short-period end, and also controls 
decay at long-periods. μ(M,R,VS30) and Tsp,0(M,R,VS30) in Eq. 8 collectively identify the location of 
predominant peak, which is one of the most important shape factor for ground motion spectral shape 
fit. Likewise, S(M,R) and Dsp describe the wideness of the bell-shape together. It is worth emphasizing 
that Eq. 8 is a continuous function of spectral period, T. Parameters of SA model shown in Figure 4 
were computed through nonlinear optimization (Graizer and Kalkan, 2008).   

  



3. PGA-BASED PREDICTIVE MODEL FOR PGV 

Our PGV prediction model is set to be a direct function of the PGA attenuation (similar to Campbell, 
1997). Thereby, independent parameter effects, well constrained in the PGA attenuation relation, are 
conveyed to PGV prediction by explicitly utilizing PGA as a scaling factor. The PGV attenuation 
model in the logarithmic space is represented as: 

1 2 3 30 (( ) ( ) ( )Sln PGV d d M d ln V d ln PGA )ln PGVσ= + + ⋅ + ⋅ +                                 (9) 

where d1, d2, d3 and d are the estimator coefficients obtained through a nonlinear regression, and their 
optimum values are computed as: d1 = 1.461, d2 = 0.656, d3 = -0.308 and d = 0.732. The standard 
deviation of prediction ( ln PGVσ ) is found to be 0.570. In lieu of using recorded PGAs, in 
determination of estimator coefficients, PGA values are retrieved directly from the PGA attenuation 
model (Graizer and Kalkan 2007). The standard error obtained is similar to the standard error in 
recent NGA attenuation relations (Stewart et al., 2008). 

Both magnitude and soil condition corrections in Eq. 9 are supplementary to those already constrained 
in the PGA attenuation, and serve to compensate for the residual distribution of PGV predictions with 
respect to magnitude and soil. Distance effect on PGV attenuation remains analogous to one already 
constrained in the PGA, thereby no additional scaling parameter of distance is introduced. 

4. SUMMARY AND FINAL REMARKS 

The proposed PGA attenuation model (referred as GK07-PGA) is structured similar to the transfer 
function of a SDF oscillator where distance to the fault (R) serves as an equivalent of the square of 
frequency (f 2). Functional form of the model is composed of a series of filters, each representing a 
certain physical effect on the attenuation characteristics of seismic radiation. In contrast to the 
existing attenuation models, our model allows PGA to reach its maximum value at some distance 
from the fault effectively capturing this phenomenon observed in a number of earthquakes.  

An original feature of the proposed SA model is its new functional form developed specifically for 
ground motion spectral shape (i.e., normalized spectrum). Hence, the spectral response ordinates are 
explicitly computed by anchoring the predicted spectral shape to PGA. Unlike classical spectral 
attenuation relations, which constitute discrete set of estimator coefficients for each period, the 
proposed model was designed as a continuous function of period.  
 
The model to predict the response spectrum is based on the GK07-PGA attenuation relation and 
yields successive predictions of actual spectral shapes in a range of magnitudes from 4.9 to 7.9 within 
a range of distances from 0 to 200 km, and for various site conditions (200<VS30<1200 m/sec). 
Formulation of response spectrum by a continuous function of period allows calculation of its 
ordinates at any period of interest within the model range of 0.01 to 10.0 sec (with more confidence 
up to 5.0 sec because of the limits in the NGA records processing). Similar to the SA predictions, 
PGV predictions are again based on GK07-PGA model.  
 
Combined attenuation model of PGA, PGV and response spectra presented in this paper is controlled 
by a number of measurable earthquake and site condition parameters, and represents a complete 
ground motion prediction model. Compared to the recent NGA relations, the proposed models 
provide significant ease in both implementation and interpretation of their equation forms as well as 
controlling physical parameters while providing comparable standard error  
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Figure 1.  Event-based comparison of our predictions with 1997 attenuation relationships. 
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   2 2 2 2
0 0 0 1 1 1 30( ) [ ( , )] 0.5 [(1 ) 4 ] 0.5 [(1 ) 4 ] ( )v S A lnYln Y ln A M F ln r D r ln r D r b ln V V σ= − − + − − + + +   

where  
Y = PGA 

0 0/r R R=  1 1/r R R=  

1 2( , ) [ arctan( ) ]A M F c M c c F3= + +  

0 4R 5c M c= +

0 6 7 8 9cos[ ( )]D c c M c c
 

= + +  

 
c1 c2 c3 c4 c5 c6 c7 c8 c9 bv VA R1 σ lnY 

0.14 -6.25 0.37 2.237 -7.542 -0.125 1.19 -6.15 0.525 -0.24 484.5 100 0.552 
                   
         Note (1): To capture basin effect it is recommended to set D1 = 0.35, otherwise D1 = 0.65  
                  (2): F = 1.00 for strike-slip and normal faulting; F = 1.28 for reverse faulting 
     (3): R = Closest fault distance and M = Moment magnitude 
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Figure 2. GK07-PGA attenuation relation. 
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                                       (a)                                (b)  
Figure 3. Approximation function fit to average spectral shape of the 1999 M7.6 Chi-Chi earthquake 
(Slope of approximation function shown in left-panel is ζ = -1.5). 
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where 

30 1 2 3 30 4( , , )S SM R V m R m M m V mμ = + + +  

3
1 2( , ) ( ) ea RI M R a M a= +  

1 2 3( , ) ( )S M R s R s M s= − +  

,0 30 1 2 3 30 4( , , )sp S ST M R V t R t M t V t= + + +  

 
   m1      m2    m3    m4   a1   a2    a3   Dsp 
-0.0012 -0.4087   0.0006    3.63   0.017    1.27 0.0001   0.75 

 
   t1    t2   t3    t4    s1    s2   s3 ζ 

0.0022    0.63  -0.0005   -2.1 0.001 0.077 0.3251 1.5 
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Figure 4. Graizer-Kalkan prediction model for five percent damped response spectral acceleration 
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