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ABSTRACT

:::

:

Using the Green’s function, the complex function and moving coordinates, an analytical method is developed
for scattering of SH -wave by a semi-cylindrical hill above a subsurface crack. Firstly, a suitable Green’s
function is constructed, which is the fundamental solution of displacement field for an elastic half space with a
semi-cylindrical hill under an out-plane harmonic line source loading at an arbitrary point in matrix. Secondly,
based on the problem of scattering of SH wave by a semi-cylindrical hill, the Green’s function is employed to
construct a subsurface crack. Finally, the displacement field of semi-cylindrical hill above a subsurface crack
under SH wave is given. The calculating results of the hill motion are plotted to show the influence of crack on
the surface displacement, which demonstrates that the presence of the crack has obvious earthquake damping
function under certain conditions.
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NTRODUCTIONNTRODUCTIONNTRODUCTION

NTRODUCTION

It is an important subject in earthquake engineering to study the influence of irregular topography on the ground
motion, which provides reasonable parameters for seismic design. In nature, because the difference of
geological structure, the cracks often be found near the irregular topography. Therefore, the research on the
influence of the cracks in basal body on the irregular topography has an important significance in both theory
and practice of engineering. But the references on the problem are seldom found. Most of the former studies
focus on the problems that scattering of wave by the interface cracks or the defects containing the cracks and
inclusions [1-7]. In 2004, Li Hongliang investigate the scattering of SH wave by a semi-cylindrical canyon and a
crack using the Green’s function [8]. Compared with the case of canyon, it is more difficult to research the
scattering of SH wave by a semi-cylindrical hill and a crack. Obviously, the study on which will provide a more
comprehensive theoretical support for the theoretical research on topography.

In this paper, the problem of scattering of SH -wave by a semi-cylindrical hill above a subsurface crack is
studied by Green’s function. Firstly, a suitable Green’s function is constructed by the method of division, which
is the solution of displacement field for an elastic half space with a semi-cylindrical hill under an out-plane
harmonic line source loading at an arbitrary point in matrix. The whole solution domain is divided into two
parts [9,10]. Part I is a circular domain including the boundary of the hill, and all the rest can be considered as part
II. If an out-plane harmonic line source loading is applied to an arbitrary point in matrix, the disturbance
impacted by the line source loading can be considered as the incident wave, and the corresponding wave fields
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are generated in two domains respectively. According to the boundary conditions of the common boundary, the
Green’s function discussed in this paper can be obtained. Secondly, some anti-plane forces with the same
magnitude as the stresses results of scattering of SH wave by the semi-cylindrical hill but in the opposite
directions are loaded on the region where the crack will appear, therefore the total stresses along this region are
zero, and the crack is constructed. Finally, the displacement field of scattering of SH -wave by a semi-
cylindrical hill above a subsurface crack is given, and the computational example is discussed.
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The model of an elastic half-space containing a semi-cylindrical hill and a subsurface crack is shown in Fig.1.
And Fig.2 shows the division of the model under anti-plane harmonic linear source loading. Domain is a
circular domain, including the boundary and .Domain II consists of boundary and . Obviously,C C S S

and are the common boundary of two parts, which means the displacements and stresses at the commonC S
boundary should be continual.
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The Green’s function discussed in this paper is the displacement solution for an elastic half space containing a
semi-cylindrical hill impacted by anti-plane harmonic linear source loading at any point in basal body. The
dependence relation of G with time factor is (and will be omitted). In complex plane , thetie  ),( zz
displacement function G satisfies the governing equation

(3.1)
2 2
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where , is the circular frequency of ; stands for the shear wave velocity ofsck   ),,( tyxW sc
the medium, and are mass density and shear modulus of medium respectively. 
In the polar coordinate system, the corresponding stresses can be written as
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Figure1 The model of a Semi-Cylindrical hill
above a subsurface crack

Figure 2 The division of the solution domain
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3.2.1 Standing wave in domain I

As shown in Fig.2, the disturbance impacted by the line source loading on any point in basal body can be
considered as the incident wave , so there will be a standing wave in domain I, which should satisfy the(i)G
conditions that stress free at the hill edge and arbitrary at other point. The standing wave in domain I can be
expressed as

(3.3)
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1 1
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the standing wave solution due to Eqn.3.3 can be expressed as[10]
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The stress expression from Eqn.3.4 is
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3.2.2 Incident wave, reflected wave and scattered wave in domain II

In the whole space, the disturbance impacted by the line source loading can be considered as the incident wave
and expressed in the form( i)G

(3.7) ( i) (1)
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i
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In complex plane ( ), the Eqn.3.7. can be written as,z z
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In the absence of the horizontal boundary, a refected wave is constructed, and the sum of and(r)G (i)G
should satisfy the stress free at the horizontal boundary. takes the form( r )G ( r )G
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The stresses due to and can be expressed as( i)G ( r )G
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In domain II, the scattered wave from the canyon is constructed to satisfy the traction free at s
sG S

horizontal surface , takes the formS  s
sG

(3.14)     s 1
0

0

m m

m ms
m

z zG W A H k z
z z






    
             



where are unknown coefficients.mA

The corresponding stresses are
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3.2.3 Boundary conditions and derivation of Green’s function



In complex plane ( ), domain I and domain II are assembled together, which means that the displacements,z z
and stresses at the common boundary should be continual. The conditions are

(3.17)
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Substituting the expressions of displacements and stresses into Eqn.3.17, and multiplying both sides of
equations by and integrating over the interval ( ), so a series infinite algebraic equations solving theine  , 
unknown coefficients , can be obtained.mC mA

So the Green’s function discussed in this paper can be given by

in domain I (3.18) stG G 

in domain II (3.19)     i r s
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4.1.1 Standing wave in domain I

As shown in Fig.2, the solution domain is divided into two parts during the solution of scattering of SH wave by
a Semi- Cylindrical Hill. Then in circular domain , the disturbance impacted by SH wave can be described by a
standing wave, which satisfies the conditions that stress free at the edge of the hill and arbitrary at other part.

The standing wave can be written as
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The stress due to Eqn.4.1 is
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where takes the same form with Eqn.3.5.mna

4.1.2 Wave function in domain II under SH wave

In complex plane , incident wave and reflected wave can be given by),( zz  iW  rW
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The stresses due to and can be expressed as iW  rW
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The scattered wave from the semi-cylindrical canyon can be expressed as Eqn.4.9, which satisfies the
stress free condition on the horizontal surface.
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where are unknown coefficients.mF

The corresponding stresses are given by
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4.1.3 Boundary conditions and determined equations

At the common boundary, the displacements and stresses should be continual, namely
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Substituting the expressions of displacements and stresses into Eqn.4.12, and multiplying both sides of
equations by and integrating over the interval ( ), a series infinite algebraic equations solving theine  , 
unknown coefficients , can be obtained.mF mB



Under SH wave, the displacement and stress field in two domains can be expressed respectively as
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The displacement field and stress field of scattering of SH wave by the semi-cylindrical hill can be obtained,
namely the stress of an arbitrary point in basal body also can be solved. Then a pair of forces with the same
value and opposite direction are applied to the region where the crack will appear, therefore the total stresses of
this region is zero, which can be thought as a crack. Using the Green’s function solved from above discussions,
which is the displacement solution for an elastic half space containing a semi-cylindrical hill impacted by anti-
plane harmonic linear source force at any point in basal body, the final displacement fields with the coexistence
of semi- cylindrical hill and crack take following forms in two domains respectively

(4.15)
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5.5.5.

5.
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SUMMARY

Calculation model is shown in Fig.3.

(1) The displacement amplitude of the hill peak shows periodical decrease with the increase of . When/h a
, the influence of creak tends to stabilization, as shown in Fig.4./ 30h a 

(2)Form Fig.5, it can be seen that the subsurface crack has notable effects on the displacement of the hill
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Figure 3 The model of calculation
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surface. Under the incident SH wave vertically, the level crack illustrates some damping effects, and the larger
value of the length of crack is, the more obvious earthquake damping effect is.

Figure 5 Variation of surface displacement amplitudes with when/x a 00 

（3）The analysis method presented in this paper is just used to the case that the crack outside of domain I. In the
dividing of solution domain, when the common boundary and the crack contact or intersect with each other, a
special analysis should be applied.
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