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ABSTRACT

In the paper the authors purpose a procedure to investigate the seismic capacity of the masonry buildings
based on the limit state analysis theory with a minimal need of data from field surveys. The method yields
to evaluate a conventional maximum lateral strength the building are capable to resist. The effort is lumped
on simplifying the set of data that are necessary to get the result, keeping arbitrary assumptions into very
narrow limits. In this sense the "vulnerability index", that is identified in the limit horizontal load of the
floor supported by the walls, is conventional, in that it is not calculated on the basis of real data, but from a
set of data that is produced by a codified procedure based on an application of Jaynes' principle.
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INTRODUCTION

Much of the seismic damage to existing, possibly old, masonry buildings depends on poor connections
between structural elements, excessive thrust from arches and vaults, badly scarfed floors and so on.
Nevertheless most codes of practice, and Italian standards in particular, require that a standard level of
load bearing capacity against horizontal forces is provided to any building to be repaired, unless the works
can be looked at as a very partial measure, that is looked at as a simple "improvement" of the aseismic
capacity of the structure. The paper aims at developping a procedure able to yield a conventional lateral
strength for buildings, with a minimal need of data from field surveys. Such lateral strength is viewed at as
a "quality index" ( the inverse of the vulnerability index) of this requirement. A certain conclusion is that if
this lateral strength is poor, the building is not safe. The opposite is not guaranteed, but it is highly
probable that in this case light works can produce significant improvement and ensure survival after
moderately intense quakes. The evaluation of lateral strength is based on very simple structural analysis,
essentially referred to limit analysis. The effort is lumped on simplifying the set of data that are necessary
to get the result, keeping arbitrary assumptions into very narrow limits. In this sense the "vulnerability
index", that is identified in the limit horizontal load of the floor supported by the walls, is conventional, in
that it is not calculated on the basis of real data, but from a set of data that is produced by a codified
procedure based on an application of Jaynes' principle.



THE ALGORITHM

Let consider a floor supported by a set of n masonry walls. If, as already announced in the Introduction,
one is interested in the maximum horizontal load-carrying capacity, one should consider an active
horizontal force F on the floor, assumed known both in direction and location, and express the equilibrium
equation of the floor

lZ]’rix = Fx = Fax
i=1

T, = F, = Fo
; y ) y (1)

Z(Tix)'.' -L.y;)=Ey.~— FyxC = F(a,y _ayxC)
i=1

where Fx , Fy denote the Cartesian components of the force vector F; x¢ , V¢ are the co-ordinates of the
centre of the application of F; x; , yj are the co-ordinates of the centroid of the i-th wall; T;; and Tiy are
the components of the shear force T; in the i-th wall; o, and ay, are the directors of F, and F is the intensity
of the action (Fig.1).
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Fig.1 - A generic set of masonry walls supporting the floor

Based on the principles of Limit Analysis, one should search for the maximum value of F respective of eqs
(1) and of the admissibility conditions

T <T, Vi=1,..... ,n )

{rsm
T, denoting the limit shear force in the i-th wall.
In vulnerability analyses, data are often not so detailed as to be able to perform the above calculations. It is
conceivable however, that some data can be reliably assumed. This is the case for the location, angle 0; on
the axis X and length ¢; of walls, that can be inferred even from building plants at a very small scale, while
the thickness b; is usually very difficult to be detected.



Therefore, it must be assumed that the above limit analysis shall be done with very poor information about
these data.

As a preliminary statement, one can consider that the expected wall thickness at the j-th floor in a m-
storeys building is strongly recommended by existing rules of the art (Alberti 1450, Benvenuto 1981,
Vituvio st cent. B.C.). It is possible, therefore, to assume a standard reference wall with any length "/"
and the thickness "b" conforming to the rule. If T, is the limit shear force in the standard wall and T, is the

limit shear stress in the masonry, one can write

. F b ¢.b. . . ) /. . .
E=1‘L,‘L=ﬂ—‘b—‘=h X, = T, =\ T,x, with li=£ and xi=L 3
T, 7t,/b, /b, b (3)

where it is expected that X; is the realization of a random variable X with expected value E[X] =
After position (3), the equilibrium eqs. (1) can be written

¢

ZTOI—cos(G ) =T, Zk cos(0,)% l=Focx
TO T()l
Z —sml@)—T stm(e) LI =Fa
=1 T()l Y (4)
T - . ~ L
ZTOI T [CO‘(B )y, —sin(0; )X, ]= T, }\’i[cos(ei)Yi _sm(ei)xi]xi T_l =Fa,y, _ayxC)
0i i=1 0i
Introducing the new random variables
'1_ 1 X >
) {r—x if 120 | i T20 )
pi = i ) ’ p1+n_ __iii if T,<0
0 if T, <0 T,
eqs.(4) become
r n n
Z;\'i cos(8;) P, _in cos(0;) P, = Sa
sz sin(9,) B, ~ "4, sin(8,) p,,, = 5at,
i=] (6)
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with § = ?/T that is the random value of the limit multiplier s = F/T,, , the randomness depending on the

uncertainty in the thicknesses. Taking expectations on both members, one gets the following equations for
the expected p's and limit force multiplier

Zk cos(,) p. Zk cos(8,) p,,, =sa, =sq,

Z)‘i sin(8;) p; _Z A, sin(®;) p;,, = sa, =sq, %)

i}"i [Cos(ei )y; —sin(6, )xi] P; _i}"i[sm(ei)xi - cos(0; )Yi]pi+n =s(a,y. 'ayxc)= 5q;

L i=1 i=1




where p, = E[ﬁk] and s= E[3].
Keeping in mind that E[X] = and the definitions (5) for . (k = 1,...,2n), the conditions for admissibility
are

0<p, =<1 Vk=1,....... ,2n
Pi Piva=0 Vi=l.uan. ,n (8)

Eq. (7) can be expressed in the compact form
Cp=qs 9

Given the matrix C, depending only on the known geometry of the structure -taking advantage from the
first (8)- one can solve the problem to find the limit strength in the floor with unknown wall thickness, by
applying the Principle of the Maximum Entropy, in order to cover the uncertainty in the distribution of the
wall thicknesses, that inficiates the expectation that s is the maximum complying with eqs. (7) in the
respect of the constraints (8), as would be suggested by classical L.A.

C..
To this aim, let transform eqs. (9), by the position, v; = — ,to the following form
q;

2n
2V pi=s
i=t
2n

Vv .p.=s
j;l LA (10)

2n
DV5 P =5

. j=1

By subtracting the 2nd and the 3rd of egs. (10) from the 1st one gets

2n

Z(Vlj “sz) p;=0

=t (11)

2n

Z(Vu “Va_i) p;=0

i=1
that, denoting by 8ij = Vij - vi+1j (1=1,2), can be expressed in the form
{'Z‘g“ p,=0 (i=1,2) (12)

while the expected failure multiplier (the guality index for vulnerability purposes) remains given by the first
(10). Note that 8ij = ~ 8ij+n-

Thus, the quality index can be found after solving the following problem

2n
find the maximum of S=-2p. In(p,)
k=1
(13)
under the conditions Gp=qs

pi pi+n = 0 Vi = 1, ........ n



The condition 0<p, <1 Vk=1,...... ,2n is implicitly satisfied by solving the above problem.
The problem (13) can be solved by investigating the Lagrangian functional, that by introducing the
coefficients 3y (r =1,2) and y; (r=1,.....,n) is as follows

% =-kYp, ln(pk)—ZB,[Zg,k h(pk))+2u;(pi Pisn) (14)

whose the stationarity conditions are

88 :
%—_ - —[ln(pm)+ l]_ ZBrgnn hl(pk )+um pm+n = 0
m r=1
m<n (15)
08 :
E (P i) 1]~ 2B B s + B Py = 0
ni+n =1

Combining eqs. (15) with the condition p,, p,,,=0 one derives, respectively

— 0 se pm+“ #0 . I—)m+n se pm =0
p'“ - ﬁm 5¢ pm+n =0 ’ pm+n B 0 Se pm =0 (16)

where

P = eva 1+ B8 )J
p—m+n = exp{_(l + i Brgr.m+n ):,

(17)

So the problem turns on finding the B; values, which can be done by transforming the problem (13) in its
dual.

Moreover in order to satisfy the condition p,, p,.,, =0, one introduces the Heavyside function H and with
the position

S =-Pn In(p,,)
(18)

Sm+n = _pm+n ln(pm+n)

after observing that the choice in eqs.(16) is determined by which one between Pm and pp+, Yields the
largest contribution to the Entropy, one can write

pm = H(Sm - Sm+l‘| )ﬁm
(19)

Puin = H(Sm+n - Sm )§m+n

Therefore the dual of problem (13) can be written as



find min mum of Z(B,.B,) = ; H(Si =Sim )ﬁ. + ; H(Si+n -5, )I_)im (20)

The condition of stationarity is

ow = 613 “ aH(Si - Si+n) — - @ - aH(Sm, - Si) -
=- H(S, - Si+n) —= i H(Si+n - Si) - — Pien (21)
o5, - 2 B, % op, P B % o,
where
@ :—f) g . ———~aiil+“ =7 g . : &I(Siﬂl _Sl) = aH(Sl —Si+n) :O 1 2
Gﬁ( 1 Ok o 6[3\( 1+n Ski+n 5ﬁ( aﬁ( (2 )

whence, substituting the eqs. (22) in the eq:(21) and remembering the eq. (17), the eq. (21) become

v e . 2
aﬁ __;gg P —glgk‘"‘ Pin "_;gk: |2 (23)

Once the values of the (3, are found, the eqs (17) and. (10) provide the value of s that maximizes the
Entropy.

CONCLUSIONS

The proposed procedure should allow examination of large urban areas with relatively small expense,

yielding results having clear meaning in relation to the probability of survival. The quality index is, in fact,

expressed as the lateral collapse load, making very easy the comparison with the action.

The method shows the possibility to be implemented in seismic risk analysis procedures. The basic idea to

balance some ignorance of the data with compatible "minimum disorder" hypothetical data sets is very

attractive, and is not confined to the application presented herein, but may be that more effective

procedures for seisiic vulnerability can be formulated on this basis.

Moreover the method proposed present the following advantages:

- does not strictly depend on the survey data collected soon after an earthquake

- produces a conventional parameter of vulnerability suitable for comparison with the main standard
vulnerability methods

- can be easily combined with computerized procedure based on automatic reading of the main geometry
of the buildings on plants of large urban settlements

- could be used to produce, in the next step of the research, a sort of continuos typology scale not confined
in the classes proposed by the macro- seismic scales and closer to the real variety of the structure
building types.
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