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ABSTRACT

A parametric time series model (ARMA model) has been developed using measured strong motion in South
Iceland. In this paper the Fourier spectra obtained using parametric time series model is compared to results
using source models. The parametric time series model is used for simulations for studying the non-linear
response of a stiffness degrading SDOF-system. The extreme value distributions of the response are
investigated. Probabilistic inelastic response spectra obtained using empirical cumulative distribution
functions are presented.
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INTRODUCTION

Based on available earthquake data recorded in South Iceland a low order ARMA model has been found to
give reasonable fit to the ground motion (Olafsson and Sigbjdrnsson, 1995a,b). The main emphasis is on
developing a model that is capable of simulating consistent acceleration series, which reflect the variability in
the data. The available data is however limited, and in this paper it is therefore suggested to use a seismic
source model (see for example Haskell, 1964 and Kasahara, 1981) to estimate the ground motion outside the
range of the data. The ARMA model is then applied to a non-linear stiffness degrading system, in order to
obtain probabilistic response spectra

MODELS FOR SIMULATION

ARMA models

In this study it is assumed that the earthquake induced ground acceleration can be represented by the
following simplified model, formulated in discrete time:

o, =Ax, for k=123,...N 1



Here, x; is a stationary zero mean Gaussian process, A is an amplitude modulation function and N = T/T,,
where T denotes the duration and T the sampling interval. Furthermore, it is assumed that the stationary
part can be represented by means of the ARMA models presented in the following equation (see for instance
Ljung, 1987 or Soderstrom and Stoica, 1989):

X tax_ totax_ ,=w,+bw,_ +.+bw,_, for k=123,...N 2)

where, w; is a ‘white’ (Gaussian) noise process with zero mean and finite standard deviation o, 4,,...,q,
and b,,...,b, are the model parameters, the AR- and MA-parameters, respectively. The left hand side of eq.
(2) is known as the autoregressive or AR part of order p while the right hand side is known as the moving
average or MA part of order ¢. The notation ARMA(p,g) is conventionally used to indicate an ARMA model
with p autoregressive and g moving average parameters.

The amplitude modulation function is assumed modelled by
A, =(k/N) exp(—c(k/N)") for k=123,...N ?3)

where, ¢, ¢ and m denote model parameters obtained from data.

Scaling formulas

The scaling of the model is done by using the standard deviation, 0,, and duration, T, of the ground
acceleration, which are assumed related to the earthquake magnitude and distance to source by the following
formulas:

log(c,)=6,+60, M —log(r)+6;r+c P 4
log(T)=¢,+9, M +¢,log(r)+o,; P (5)

Here 6, ,0,, 6,, @;, ¢ and @; are regression coefficients, 0 and o7 are the standard error of log(o, ) and
log(o,), P is a suitable fractile in the standardized normal distribution, M is the magnitude of the

earthquake and r =vd’+h’ , where d is the shortest distance to the causative fault and & is a ‘depth’
parameter.

Stiffness degrading structural model
The elastic plastic hysteresis model has been widely applied along with the closely related bi-linear hysteresis
model. A more flexible model is the so-called Bouc-Wen model (see for instance Bouc, 1967, and Wen,
1989). The restoring force in a hysteric degrading version of this model can be expressed as follows (see
Baber and Wen, 1981):

G, = ap) y, +(1-a)K,z (6)

where

Wz +Blal vi+r|via|a-Byi=0 @

Here, p is the mass of the system (taken as a unit mass in the following), K,, is the yield force, y,, is the
corresponding yield level, a, B, B ¥, v and nare (time-varying) parameters which define the hysterisis loop



and degradation of the system, and primes are used to denote time derivatives. For a stiffness degrading
system the parameter, 77, can be assumed to increase as function of the total energy dissipated by the

hysterisis, £ , according to 1(g) =1+ 9 £ » Where ) , 1S a nonnegative parameter.

Probabilistic response spectra

For a given set of ARMA parameters a stationary time series is readily obtained using eq. (2) and a computer
generated sample of ‘white’ Gaussian noise. An accelerogram, ¢, , is obtained by multiplying the ARMA
series with a suitable amplitude modulation function (see eq. (3)). Then, earthquake induced structural
response of time invariant single degree-of-freedom (SDOF) structural systems may formally be obtained
using a discrete time series model of the following type:

Ve = H(@ Vi Yi_goe|@,58000) ®
where H(...) is a system function depending on undamped natural frequency, w,, critical damping ratio, { ,
and if required, parameters representing non-linear properties.

A probabilistic definition of the earthquake response spectrum can be based on the statistical properties of
Ypeak = max(ye) as an extreme value from a filtered Gaussian process. If the filters involved are linear it can be
shown that ypea follows asymptotically a type I extreme value distribution. For non-linear systems this may
hold as an approximation in some cases (see for instance Clough and Penzien, 1993). Alternative methods of
dealing with probability distributions of non-linear response include transforming the non-Gaussian variable
to a Gaussian one (Winterstein, 1989), or simply using empirical distribution functions either derived from
recorded accelerograms (Mirinda, 1993), or by stochastic simulation.

In probabilistic terms the displacement spectrum, §,, for inelastic systems, taking the yield force, K, as a
parameter, can formally be expressed as follows:

P{max(y,) < 8,l@,,{, K, ] = F;, (S,) ©)

Here P[ ] denotes the probability operator and F;(S)is the probability distribution of S. Correspondingly
the acceleration spectrum, S, , for inelastic systems, taking the ductility ratio i , as a parameter, is given as:

P[max(G,) £ S, |w,. ¢, 1] = F; (S,) (10)
where the ductility ratio is defined as y = max(y)/y,, where y, is the yield displacement. The seismic
coefficient is givenas C=§,/g.

For inelastic response spectra it is common to plot the ductility against the initial undamped natural period of
the system, T, = Zﬂ,/pyu /K, . In accordance with this the inelastic response spectrum can either be
calculated as a constant strength spectrum (eq. (9)), or a constant ductility spectrum (eq. (10)). The latter

however requires considerably more computational effort, as it involves iteration until a certain ductility is
achieved (Mahin and Bertero, 1981, Miranda, 1993, Olafsson and Sigbjornsson 1995b).



RESULTS
Strong motion data

Results based on available data from South Iceland suggest ARMA(4,1) as an optimum model. A
representative model was obtained by taking average values of the model parameters derived from 54
accelerograms from 6 earthquakes with magnitudes in the range 4 to 6 and epicentral distances in the range 0
to 80 km (Olafsson and Sigbjornsson, 1995a,b). The resulting parameters for the ARMA model (eq. (2))
and the envelope (eq. (3)) parameters for horizontal ground motion are shown in Table 1. Revised values for
the scaling formulas of eq. (4) and (5) are also given in Table 1, and in Fig. 1 the fitting of the curves to the
data is displayed.

Table 1. Model parameters, for eq. (2), (3), (4) and (5), with sampling period, Ty = 0.02 s.

ARMA parameters  Envelope parameters  Standard deviation  Duration formula

a, =-0.82 e=10.310 0, =-4.1405 ¢, =-0.3701
a, =—-035 c=2080 0, =06124 @, =01255
a; =-0.20 m=1 6,=0 ¢@; =0.3507
a, =022 N=TIT; o =02070 o, =02008
b, =097
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Fig. 1. Scaling formulas and observed values for earthquakes with magnitude greater than 4 and less than 6.
a) Normalized standard deviation of horizontal ground motion.
b) Normalized duration of horizontal ground motion.
The solid line represents the mean values and the dotted lines the mean values + one standard
deviation.

Comparison with source model.

The earthquake model presented has been verified by comparing it to a source model for the so-called
Vatnafjoll earthquake (Bjarnason and Einarsson). The source duration derived for this earthquake is 3 s
(Olafsson et al., 1996) and 3+ 1 s (Bjarnason and Einarsson, 1991), which fits reasonably well with eq. (5)
that gives 4 s for the epicentral area, that is d = 0.



Fourier spectra obtained from the ARMA model is also found to be in fair agreement with spectra obtained
from the source model, for magnitudes and epicentral distances which are within the limits set by the data.
This is demonstrated in Fig. 2 for a site 15 km from the source, for the Vatnafjoll earthquake. In the figure a
comparison is made between the average Fourier spectrum obtained from 50 simulations with the ARMA
model and the Fourier spectrum obtained using the source model.
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Fig. 2. A Fourier spectrum derived from ARMA model (using an average of 50 simulations - solid line), and
a Fourier spectrum obtained from a source model (dotted line). Magnitude of earthquake, M = 5.9,
distance to causative fault, d = 15 km.

The ARMA model is an empirical model based on still rather limited data. It is suggested that using the
ARMA model based on measured data and the theoretical source model outside the range of the data could
lead to a hybrid model (Johansen and Foss, 1995). Further analysis along these lines would explore the
relation between the parameters of the source model and the ARMA parameters or the zero-pole locations,
in order to include in the ARMA model a change in predominant period of ground motion, with regard to
epicentral distance and magnitude.

Probabilistic response spectra

The earthquake model presented here has been applied to simulate probabilistic response spectra. In the
simulation account is made of the observed variability of standard deviation of ground acceleration and
duration of shaking. In studying the variability of the ground motion, the duration, 7, and the standard
deviation, G, are assumed approximated by a truncated log-normal distribution. The response of a SDOF-

system, with degrading stiffness, using the Bouc-Wen model to model the hysterisis, was calculated for an
ensemble of simulated earthquakes. A sample is shown in Fig. 3a. In all cases considered the extreme values
of the simulated response data (see Fig. 3b) could not be described by classical asymptotic distributions
without exceeding the 95% confidence limits. A Hermite moment model was applied to the response
(Winterstein, 1989), reducing the non-linear analysis to transformations of results for Gaussian responses.
The resulting distributions were, however, not sufficiently close to the empirical distributions, possibly due to
non-stationarity in the data or the order of the transformation was not high enough.

In Fig. 4 the probabilistic response spectra for a stiffness degrading system is shown, as obtained from the
empirical distributions of an ensemble of 100 simulation. The damping ratio,{ =0, stiffness degrading



parameter, 8, = 0.01 and hysterisis loop parameters, a =0, f=y =05, v=2, and B = 1. Magnitude of
earthquake, M = 7, distance to causative fault, 4 = 10 km, depth parameter, » = 5 km. The average peak
acceleration was 0.47 g and the yield strength, K, = 0.25 g. Fig. 5 shows the corresponding spectra as in
Fig. 4, with displacement instead of ductility.

The ductility demand increases dramatically for lower periods, and the of risk of exceedance. For example at
a period of T, =0.3 s and &, = 0.01 the ductility demand increase from 7 to 22 by decreasing the risk of

exceedance from 50% to 16%. It can be seen in Fig. 5 that the displacement increases with higher periods. In
Fig. 7 the yield strength is taken as a parameter instead of &, . For a design yield strength of 0.25 g, and a
period of 0.2 s, the risk is 50% that a ductility level will be 14 or higher and 16% that it will be 30 or higher.
The examples presented here are taken to demonstrate the effect of a catastrophic ground motion on a
stiffness degrading structure. Further research is need to improve the strong motion model in order to obtain
realistic probabilistic response spectra.

0.2 . . . 7 . . .
0.15 6
2 o1 5t
ut
g 0.05 _ 4t
o &
W ~
o £°
z -
Z 005 < 2f
O :
5 01 1}
@
0.15 of
02} 1
025 \ . 2 . . . , . .
- 0 2 4 0 5 10 15 20 25 30 35
DUCTILITY RATIO DUCTILITY RATIO
a) b)

Fig. 3. a) Hysterisis loops,T, =0.5 s ,K,=0.25 g, and §, = 0.01. A system with nondegrading stiffness is
represented by dotted line. Same system with degrading stiffness is represented by solid line.
b) Empirical probability distribution of extreme values of response, K, = 0.25 g, and 6, = 0.01.
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Fig. 4. Constant strength response spectra, with K, =0.25 g, and 6, =0, 0.01, 0.1 a) 50% probability of
non-exceedance. b) 84% probability of non-exceedance.
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Fig. 5. Constant strength response spectra, with K,=0.25 g, and 6, =0, 0.01, 0.1. a) 50% probability of

non-exceedance. b) 84% probability of non-exceedance.
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Fig. 6. Constant strength response spectra, with , = 0.01, and three levels of yield strength K,=0.1 g,
0.25 gand 1 g. a) 50% probability of non-exceedance. b) 84% probability of non-exceedance.

A preliminary comparison of the Fourier spectra of the ARMA model and a seismic source model suggest a
fair match in the range where there is available data. Furthermore there is good agreement between the
source duration obtained from the source model and the duration obtained from the empirical duration

formula.

Simulation studies of the response of a stiffness degrading system produce ensembles of peak values which
can only be considered to follow theoretical asymptotic extreme distributions in a very limited way. This
resulted in the use of empirical distributions, in order to obtain a probabilistic response spectra. The results of
this paper confirms the necessity of considering the effect the uncertainties in the earthquake motion on the

CONCLUSIONS

response.
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