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ABSTRACT

A direct integration scheme to compute dynamic response of structure with nonlinear stiffness property is
proposed. This method utilizes and combines the advantage of the Central Difference Method in accuracy
and that of the Averaged Acceleration Method in unconditional stability, which does not require the iterative
calculations. Numerical analyses are conducted to examine the usefulness and validity of the proposed
method in nonlinear dynamic response analyses using Finite Element Method. The proposed method is
stable in calculation due to the high damping property in higher frequency range and the high accuracy in
lower frequency range.
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INTRODUCTION

When we analyze the dynamic response of structures, it is necessary to integrate the equations of motion. A
number of time integration schemes have been proposed for nonlinear dynamic analyses. Some of these
schemes demand iterative calculation for each time step to compute the responses against dynamic loads,
and others have the strict condition of analyses for the stability, such as the central difference method. A
huge computing time is required for a nonlinear large degree-of-freedom system such as Finite Element
analyses, especially, when the system shows such a strong non-linearity as the separation and sliding
phenomena at the contact surface. Therefore, we propose a numerical integration scheme for nonlinear
dynamic Finite Element Method.

In this paper we discuss the proposed numerical integration scheme. A brief description of the method and a
few widely used time integration methods is presented and their application is illustrated. In addition,
accuracy, stability, and efficiency of the proposed method are examined by the theoretical approach based on
the modal analysis and the results for a example.

TIME INTEGRATION OF STRUCTURES
WITH NONLINEAR STIFFNESS PROPERTIES

The equation of motion of a system with the nonlinear stiffness property can be written as

[m]{x(D)} +[c]{x(0)} + [k]{x(D)} = {g(1)} = {p(D)} (D

where [m], [c] and [£] are mass, damping and stiffness matrices of the system, respectively, {x(¢)} nodal



displacement vector, {q(#)} a quasi-external force vector, which can be considered as an additional external
forces to make the linear system equivalent to the nonlinear system, {p(¢)} external force vector and dot ( - )
represents differential of time.

A time integration scheme requires that Eq.(1) should be satisfied at each discrete time. In this paper, the
time step interval, Af, is assumed to be constant and #,(= kAt) is the time of kth-step, {x}.,{X}+,{X}s
nodal displacement, velocity and acceleration vectors, respectively, {g}« quasi-external forces and {p}«
external forces, at time of .

In this section, three time integration schemes, the iterative method, the central difference method and Sun’s
method are reviewed at first. Next we propose a new method for time integration of nonlinear multi-degree
system which is suitable for Nonlinear Dynamic Finite Element analyses. In the explanation, {x} denotes the
responses of the entire system and {y} the responses excited only by the increments of the quasi-external

forces, {Aq}.

Iterative Method

This method is most popular for nonlinear Finite Element analyses, also called “ Load Transfer method”
(Toki et. al., 1980). This method is based on the averaged acceleration method for the time integration. The
averaged acceleration method assumes the following relations;

{f}nn = {X},, +_"=/‘2!.({x}" + {f}nﬂ) s {f}nﬂ = {x}n + At{x}n +"AL€—2({x}n + {f}m’l) (23,2b)

in which = means the responses at time f,,, which are excited by {g}, instead of {g},+ in Eq.(1), whose
detail is described later. Egs.(2a,2b) are solved for {¥},,, and {%},,, interms of {x},,, as

B =8~ B+ (e =), By == + (B~ £1) . (B23b)

Substituting {%},., and {x},,, of Egs.(3a,3b), respectively, into Eq.(1) at time #,.;, we get {X},,, by
solving the equation as follows;

(Thoer = (K14 2Acd D) ((Dhaer + ths + Iy 1), + 2, 4 00,) + [ 20, + £0,)) @)

where the quasi-external force vector {g}, should be {g},+ to satisfy Eq.(1) at time #+), but we use {gq},,
because {q},+1 is unknown at the time of calculating {%x},,,. Thus denotes that the responses are
calculated with {g}, instead of {q},+;. We shall remove it when the responses satisfies Eq.(1). {¢},+1 and
{7 }.. are quasi-external force vectors computed by {x},.+; and {x},,,, respectively.

Substituting the quasi-external force vector {7},,; which is determined the nodal displacement vector
{x},., obtained from Eq.(4), into {q}. of Eq.(4), we get modified {x},,, and {g}..,. The iterative method
is required to repeat the calculations above until quasi-external forces converges. This method is so accurate
that it is used in general, but the computing time for the iteration is very large. For example especially, in the
case of analysis of separation by making use of joint element, it takes a great number of calculating time
costs.

Central Difference Method

In the Central difference method, accelerations and velocities at time ¢, are described, respectively, as
follows;

]
(e}, = gz (b = 200h + fhi)s 48, = 5o

Substituting Eqgs.(5a,5b) into Eq.(1) at time #,, we get the equation below;
ot = (014 L) (1) ar® + (gh, a2 = (1A = 2AmD(sy, - (i) - Lfel)ims,n). (6

As Eq.(6) gives displacement time series, accelerations and velocities are obtained by substituting
displacements into Eqs.(5a,5b), if necessary.

(= x3,00) - (5a,5b)

This method is very accurate in calculating with a sufficient small time interval, At , whereas the condition
for it’s analytical stability is highly strict. So the method is not suitable for analyses of the multi-degree-of-
freedom such as Finite Element analysis, because At must be set very small value in order to satisfy the



stable condition for it’s highest mode.

Sun’s Method

This method is based on the Wilson € method for the time integration. The responses excited by the
increments of quasi-external forces are independently inferred using the principle of impulse-momentum.
(Sun et. al., 1991). This method is precise for a small degree-of-freedom system, while it is not suitable for a
multi-degree-of-freedom system by the same reason with the central difference method. As mentioned above,
this method is mainly based on the Wilson @ method (SUN(3=1/6,6=1.38)), it can be extend to the linear
acceleration method, (SUN(8=1/6,8=1.0)) and the averaged acceleration method, (SUN(/5=1/4,0=1.0)).
In the extended Sun’s method for the averaged acceleration method, responses at time #,+1 are given by

o = (1K1 + 21+ 2] (Do + de + Dl 01+, 000, )+ 1A 0, + 030,)) D)

{x}n = —{x}, +_AZ;({x}"+' - {x}n) +[m]‘]{Aq}% @)

{x}nﬂ = [m]vl({p}m»l + {q}n+l - [C] {x}n+1 - [k] {x}n+l) . (9)

The extended Sun’s method is, as shown by numerical examples later, so stable in high frequency range that
it can obtain a rather accurate solution for a multi-degree-of-freedom system, such as Finite Element
analysis.

Proposed Method

In this paper, we propose a further stable time integration scheme for higher mode. In the proposed method,
computing each response vector from Eqs.(3a,3b) and (4) in the same way as the iterative method, now we
introduce the increment of the quasi-external force vector, {Aq}(= {q}..i — {q},) and the responses excited
by {Aq} are calculated using the central difference method instead of iteration in the iterative method.

Now, suppose another system loaded only {Ag}. In case that {Ag} is loaded at Ist-step, the equilibrium
equation of this system can be written as

[ml{p}h +[cl{ph + k] = {4q} (10)

where {y} is nodal displacement vector excited by the increment of the quasi-external force vector. In the
central difference method, the relations for {p},, {y}, and {y}, are assumed by substituting »=1 into
Egs.(5a,5b). In which {y}, is {0}, because {y}, is calculated at the step before {Aq} is loaded, and initial
displacements, {y} is also {0}. Then, we have

o o_ 0o 1
g = AL Ul 1842 A7 s (11a,11b)
Substituting the relations for {y}, and {y}, from Eqs.(11a,11b) into Eq.(10), we get Eq.(12).
) = (I + A1) (ag)ar (12)
{y}, and {y}, are derived by substituting Eq.(12) into Eqs.(11) as follows;
—1 -1
= (Im+ 4el) agh, G = (i + Apel) {ag L (13a,13b)

where {p}, and {y}, are the acceleration and the velocity vectors, respectively, excited by {Aq} at the step
{Aq} applied. On the other hand, Egs.(3a,3b) and (4) can be written about the responses without considering
{Aq}. Thus the summation of these two equations of motions for each systems satisfies Eq.(1) at time #,+,
for entire system. Then we get the responses at time #,,+ as follows;

(oo = (161 + 21+ 0] (Db + () + I s he + 010, + (00,) + 2 0, + 13,)) (19

) ~1
83t = =t + 2o(txds = ) + (I + L1el) (g3 4 (15)



Bt =~ (8 =20}, + (s~ )+ (0 + AL 11) (g (16)

As the response vectors in Egs.(14), (15) and (16) satisfy Eq.(1) at time #,+1, we don’t put  on them. In
above equations, {4q} is not ({g}... —{q}.) but ({g}... —{g}.) because {y} ={0} makes {x},+ equal to
{x},..1 and {q},+i equal to {7},.,. Consequently, {g},- is determined by {x},.; in Eq.(14).

PROPERTY OF PROPOSED METHOD

The proposed method is different from the other time integration method in dealing with the increment of
quasi-external forces, which occurred in calculation of a nonlinear system. In this section, we consider the
system loaded only the increments of quasi-external force vector, {Aq}. Then we clarify the property by
comparing the response displacement vectors computed by the central difference method and the proposed
method at the step next to the step at which {Aq} is loaded. {x} and {y} are denoted by the response
displacement vectors calculated by the proposed method and the central difference method, respectively,
excited by the increments of quasi-external forces.

Consider a system of which initial, Oth-step, condition is that displacements, velocities and accelerations
take zero value. {Aq} is loaded at 1st-step. Then,

o = {x}o = (X0 = {0}, {Plo={ph=1{ph=1{0}, {g}o =10}, {g} ={4q}. (17)

In the proposed method, substituting » = 0 and Egs.(17) into Eqgs.(14), (15) and (16), we get the 1st-step’s
displacements, velocities and accelerations as follows;

(=10}, (xh =(ml+ L) a4, (), = () + A1) gy (18)
Then, n =1 and Eqs.(17) and (18) are substituted to obtain the response displacement vector at 2nd-step;
oh = (61 + 1)+ o] (tdgh + D (e o )+ L 2+ 1)) (9)

By substituting Eqs.(18) into Eq.(19) and factoring ([m]+[cldr / 2)-'{Aq}, the different equation for {x} is
written as follows;

0 = (16 + 241+ - ) (4 + arfe[) + LL 1)) g3 20)

On the other hand, {y}, denotes the response displacement vector obtained by the central difference method
at the 2nd-step under the same condition. Substituting n =1 and Eqs.(17) into Eq.(6), we obtain {y}, as
follows;

e = (I + 4L (ag) e @1

Now we discuss the difference between {x}, and {y},. Substituting Eq.(21) to Eq.(20), we can get the
relation between {x}, and {y}- as follows;

{x}, = (Ar[k]+ 24¢[c] + 4[m])"(4[m] + Alcly}, . (22)

In case of a Rayleigh hypothesis damping, eigen vector of the system must be orthogonal. The stiffness,
damping and mass matrices can be written using eigen vector as follows;

B/ [kig}, = 0?6, B [clig}, =2hwo;, (B} [mlig}, =6,, (1<i,j<N) (23)
where {¢}; and A, are the eigen vector and the damping factor for the eigen frequency, w,, respectively,
and N the number of freedom and &ij Kronecker’s delta. We define [@] as the modal matrix of which ith-
column component is eigen vector, {¢}, . In matrix form, Eqs.(23) is rewritten as

(@Y [ml[@]=1[1] (24)
The different formula of Eq.(22) is obtained using modal matrix [@] as follows;

{x} = [@)[@] (A [k] + 241[c] + 4m]) (@] ([ @V (4[m] + A PN DI {p}

= [@I[A[ P {y}2 (25)



where,
(A1 =[AT'[4:], [4]=[DV(A[k]+24dc]+ 4m)[ @], [4]=[P)(@dm]+ Ac])P]. (26)

From Eqgs.(23) and (26), 4, ith-row and jth-column component of [4], is given by
2hw, At +4

4= oran v ana a0 (1SEI<N). 27)
By substituting [@]' obtained from Eq.(24) into Eq.(25), we get
X =[BlIIM]{T}, (28)
where,
N N
[Bl=[@][4]{®]"  or B,=)% ®yAuD] (29)
k!

where subscripts i and j denote a row and a column of matrix, respectively. Since [A] is a diagonal matrix as
shown in Eq.(27), 4, =0 incaseof k #/, Bjis given by

N
B, =Y @y AuDl . (30)
k

From Eq.(29), it seems that B is under the influence of all component of [A]. But in fact, as Eq.(30) shows,
Apnn, nth-row and sth-column diagonal component of [4], has an effect upon Bj only with@,, and @&F.
Where @&, and @, are ith- and jth-component of nth-eigen vector, respectively, therefore A4,, is not
effective for B, without nth-eigen vector. And Eq.(21) shows that 4,; approximates to zero in higher modes
and to 1 in lower modes. The relation between A4;; and eigen period are shown in Fig.1. In the figure, T
denotes eigen period. This figure indicates that A4,; is about 0.9 at eigen period of 7/ At =10, approximates
to 1 in lower modes and decrease radically to zero in higher modes than that period. Hence it is shown that
the proposed method gives response displacements excited by the increments of quasi-external force, which
are close to the displacements obtained by the central difference method in lower frequency and are smaller
than those in higher frequency. This is the reason why the proposed method is accurate and stable.
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Fig.1 Relation between Aii and eigen period

NUMERICAL EXAMPLE AND DISCUSSION

Two numerical examples are presented to verify the accuracy and the stability of the proposed method. Six
time integration methods are compared by the single-degree-of-freedom free-fall and bound model (Model
1) and the dynamic soil-structure interaction model using FEM (Model 2). Two cases of time intervals are
analyzed for comparison, since the accuracy and the stability of the solutions are influenced by the ratio of
the computing time interval, At . to the eigen period of a system.

Six time integration methods used in the comparison are listed as follows;
o lterative Method
. Central Difference Method
«  Sun’s Methods (Sun( 8=1/6,60 =1.38), Sun(3=1/6,6 =1.0) and Sun(B=1/4,0=1.0))
«  Proposed Method.

Single-degree-of-freedom Free-fall and Bound Model (Model 1)
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Fig.2 Single-degree-of-freedom of free-fall and bound model (Model 1)
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Fig.3 Calculate displacement of mass (Model 1)



Suppose that a ball free-falls and bounds on a floor. In the model, the mass is supported by the damper and
the spring as shown in Fig.2(a), and it may move only vertically. The gravity (Mg) is always acted vertically
as an external force. The stiffness of the spring has a elasto-perfect plastic property as shown Fig.2(b). In
case of x <0, the eigen period of this system is 0.04 second. The initial condition of this model is
x0 =10(m), x, =0(m/sec) and X, =0(m/sec?).

Fig.3 shows the time history of response displacement of the mass. In this figure, a dashed line indicates the
response computed by lterative Method with At =T /32. In case of At =T/16, the solution by Sun’s
method(5=1/6,6 =1.38) diverges, while those by the other methods give good approximation. On the other
hand in the case of Af = T/ 4, the solution by Proposed Method is stable but numerical errors make the
natural period longer, while those by the others are unstable.

Finite Element Model of Soil-Structure System (Model 2)

Fig.4 shows the model 2, which is a structure (40m high and 12m width) resting on a half-space ground
(320m width and 50m depth). The joint elements are adopted at the contact surface between soil and
structure to represent separation and sliding. The shear constitutive relation of the joint element and soil
element are assumed to be elasto-perfect plastic and the Mohr-Coulomb’s law is adopted for the failure
criteria. Table 1 shows physical properties of this model. In this model, the first eigen period is 1.3 second
and the highest eigen period is 7 x 10~ second. The input motion of the analyses is NS component of the El
Centro (1940) of which peak acceleration is scaled to 200cm/sec’.

Table.1 Physical properties of system

structure (H40mx B12m) nm A
) # joint element g Soil__ [Structure| Joint
soil (D50mx W320m) ihiys v; Unit weight 1.8 2.3 | ks=49
/ X (x9.8kN/m?) {GN/m)
‘ Shear wave 286 2000 | kn=49
e velocity (m/s) (GN/m)
8‘ Poisson's 0.30 0.16
ratio
Y Damping 0.08 0.05
factor
)< 320m . - EEREEE Friction 36 24
angle(°)
Fig.4 Finite element mesh of dynamic soil-structure Cohesion 0 0
interaction system (Model 2) (kN/m?)

Fig.5 shows the horizontal displacement of structure at the center of gravity in case of Ar =1/1,000and
1/200 second. In this figure, a dashed line denotes the response displacement computed by Iterative Method
with At =1/10,000 second, while all methods give accurate solutions in the case of Ar=1/10,000 second.
The figure indicates that Sun’s method( 8=1/4,0 =1.0) is accurate in the case of As =1/1,000 second but
unstable in the case of Ar=1/200 second, while Proposed Method keeps high accuracy in the case of
At =1/200 second. Sun’s method for3=1/6,0=1.38 and that for £=1/6,0=1.0, and Central Difference
Method are divergent in the case of A;=1/2,000 and Ar=1/1,000 second. The necessary CPU time of
Iterative Method for the analysis is about 15 and 70 times larger than that of Proposed Method in the case of
At =1/1,000 and Ar=1/200 second, respectively. The CPU time of Ilterative Method depends on its
convergent condition, which is assumed in the analysis that the iterative increment of a nodal quasi-external
force is less than 9.8 x10-* kN in this study.

CONCLUSIONS

A new time integration scheme for a large degree-of-freedom system with nonlinear stiffness such as Finite
Element model has been developed. Theoretical approach based on the modal analysis and numerical
analyses are conducted to examine the usefulness and validity of the proposed method in nonlinear dynamic
response analyses. The conclusions are summarized as follows;

1. The extended Sun's method which is based on the average acceleration method is useful for nonlinear
dynamic Finite Element Method.

2. The proposed method which is based on the average acceleration method and the central difference
method is more stable than the extended Sun's method. The method is especially useful for response analysis
of large degree-of-freedom such as Finite Element model.
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Fig.5 Horizontal displacement of structure at the center of gravity (Model 2)
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