< > Copyright © 1996 Elsevier Science Ltd
? Paper No. 949. (quote when citing this article)

Eleventh World Conference on Earthquake Engineering
11 WOEE ISBN: 0 08 042822 3

SOIL-STRUCTURE INTERACTION EFFECT
ON THE
EIGENPROPERTIES OF STRUCTURE

N. FUKUWA and M. A. GHANNAD

Department of Architecture, School of Engineering, Nagoya University
Furo-Cho, Chikusa-Ku, Nagoya 464-01, JAPAN

ABSTRACT

In order to grasp the effect of soil-structure interaction (SSI) on the dynamic characteristics of structure, the
eigenproperties of a shear building model with uniform mass and stiffness distribution on surface of a
homogeneous half-space are evaluated. As the evaluation method, two approaches are introduced : 1) Explicit
representation of the determinant of the dynamic stiffness matrix using the cofactor expansion property, 2)
Using the transfer matrix method to represent the transfer function explicitly. By using the cone models as an
alternative to the rigorous solution for soil's impedance functions, the dependency of the soil-structure system's
natural frequencies and damping ratios on the analysis model, number of stories, size of foundation and soil's
stiffness are studied through the complex eigenvalue analysis. This is done for both, undamped and damped
cases and it is clarified that the SSI has a large influence on the dynamic properties of structure. In this regard,
the proper selection of damping model plays an important role.
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INTRODUCTION

Contrary to the conventional assumption, the soil under the structure is not rigid and the interaction of the soil
and stucture leads to a new system with different dynamic properties. This soil-structure system usually has a
longer natural period than the fixed-base structure model. It also has a higher damping ratio, due to the radiation
damping in the soil. Furthermore, soil-structure system is affected by additional mode shapes than those taken
into account in the fixed-base model because of the sway and rocking degrees of freedom. The key aspect of
any SSI analysis is the suitable modeling of the soil and calculating its dynamic stiffness. In this regard, as an
alternative to rigorous solutions, cone models based on the one dimensional wave propagation theory can be
used with sufficient accuracy for practical applications (Wolf, 1994). In this research, by using the cone models
for homogeneous half-space (Wolf and Meek, 1992 and Meek and Wolf, 1993a), the effect of SSI on the
dynamic properties of structure is investigated. Also investigated is the importance of proper damping modeling
and its effect on the SSIresults. Although this research is done for the foundation on the surface of a homogeneous
half-space case, the cone models also allow the embedded and pile foundations even for a layered site to be
analyzed (Wolf, 1994). Therefore, the method can be easily extended to the other above mentioned cases.



COFACTOR EXPANSION METHOD n m,j
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Figure 1 shows the uniform distributed mass and stiffness shear building model el mj I
which is chosen as the basic model in this research. In this model, each story is |
considered as a lumped mass with mass and mass moment of inertia of m and j, k, \

respectively. The total stiffness of each story is represented by a spring with stiffness ) !
of k and the material damping is considered as the hysteresis damping with damping
ratio of A. The height of all the stories are assumed to be equal and represented by
H. Additionally, the effect of soil is taken into account by introducing the translational
and rotational springs and dashpots under the structure's foundation. The general
free vibration equation of motion for this model will be as follows :
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The last two rows and columns of the coefficient matrix in the left-hand side of (1) are related to the sway and
rocking degrees of freedom, respectively. So, the equations of motion for the sway-permitted and fixed-base
cases can be easily obtained by deleting the last one or both of them, respectively. In each case, the complex
eigenfrequencies of the n-story building will be computed by equating the determinant of the related stiffness
~ matrix to zero. By cofactor expansion method, these determinants can be expressed in the following form for
the fixed-base, sway-permitted and SR cases, respectively (Fukuwa et al, 1995).
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is the determinant of a tridiagonal submatrix which is obtained by deleting the first raw and column of the
dynamic stiffness matrix for fixed-base case. In all above equations, the indices show the dimensions of the
related matrices. Also, the other parameters are defined as follows :
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TRANSFER MATRIX METHOD

Figure 2 shows the basic perodic structure model and its fundamental structural element. The governing equation
of motion of this model for unit support excitation is

o),

where T is the transfer matrix for each fundamental structural element as bellow
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Solving (8) easily leads to the response of each particle (i.e. the transfer function). Figure 3 shows the sway-
permitted case in which the sway spring and dashpot are considered. Additionally, the mass m/2 is added to the

particle O as well as the last particle in order to form a uniform distributed mass model. It should be mentioned
that the fixed-base model can be considered as a limit case in which the stiffness and damping coefficients of

in which k"=(1+2hi)k , cosp=1-B*, B (10)
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Fig. 2. Basic periodic structure model Fig. 3. Sway-permitted model

the spring and dashpot approaches infinity. After modifying the governing equation of motion, (8), for this
condition, it leads to the following solutions for the fixed-base and sway-permitted cases, respectively (Fukuwa
and Matsushima 1994 and Fukuwa et al, 1995).

(2n-21+1) . (2n-21+1)
cos——z———(p KyCOS———2¢ =01 .
U= (Zn+1) W= (2n+1) (2n+3) ¢=0L..m) (D
cos—2-—(p (K'H —1)cos—(p+cos—2——(p

where
K = k, +lf00H =x, 1 +2h,,§1
k 1+ 2hi
For the fixed-base model, the complex eigenfrequencies will be computed as follows by equating the denominator
of the right-hand side of the related formula in (11) to zero
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Also the eigenmodes can be calculated by introducing (13) in (11). So, it means that the natural frequencies,
mode shapes and transfer functions can be obtained explicitly by using the transfer matrix method. However,
unfortunately, for the sway-permitted case, the natural frequencies can not be represented explicitly.
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RESULTS FOR A TYPICAL EXAMPLE

An ordinary RC rigid framed structure with square plan is used here as example to show the results more
clearly. The number of stories, n, the number of spans, n, (which is related to the foundation's dimensions
directly) and the shear wave velocity of the soil, V, are selected as key parameters in this research and the other



parameters are fixed to the following numerical values :

m=12tm?,/=7Tm,H=4.0m, b=0.9 m, E=2.1x10" kN/m? , h=0.01 , p=1.8 tm®, v = 0.4
which are belonged to the mass per unit area of each floor, the length of each span, dimension of the square
columns, the modulus of elasticity, complex damping ratio in the structure, specific mass and the poisson's
ratio in the soil, respectively. It should be noted that since the poisson's ratio in this numerical example is
chosen greater than 1/3, the specific recommendations by Meek and Wolf (1993) is considered in relation to the
cone models.

Undamped Case

First the damping effect isn't addressed and therefore a real eigenvalue analysis is done. Figure 4 shows the
variation of the undamped circular frequencies with the number of stories, shear wave velocity of the soil and
number of spans. In each figure, the results of the fixed-base, sway-permitted and SR models are shown as a
nondimensionalized factor by dividing them by ,. Figures 4-a and 4-b show an obvious difference among
different models, especially for lower modes of lower number of stories or softer soil. As the shear wave
velocity of the soil increases, the differences between the sway-permitted and SR models with the fixed-base
model decrease, as expected. Also Fig. 4-c shows that except for the first mode of SR model, the effect of SSI
on the natural freqencies increases by increasing the number of spans. It means that generally the SSI effect is
more important for larger size foundations, but it is necessary to consider the effect of rocking when the
number of spans is too small. Since the first mode of vibration is usually the most important one, the variation
of the first natural period of structure with the key parameters are presented in Fig. 5 for different base conditions.
Again, the results are nondimensionalized by dividing by T, the natural period of the single degree of freedom
system. Figure 5-a shows almost a linear relationship between the first natural period and the number of stories
for the fixed-base and sway-permitted models. These linear relationships seem to be extented parallel to each
other for larger number of stories. On the other hand, the relationship for the SR model is not linear and the
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higher number of stories, the more necessity to considering the SSI effect. Figure 5-b is compatible with the
fact that the results of the sway-permitted and SR models converge to those of the fixed-base model for high
shear wave velocities of the soil. As concluded before, Fig. 5-c shows that rocking effect may be important for
very small foundations. Also shown is the fact that although the sway-permitted case results are close to those
of fixed-base model for low number of spans, the difference become larger as the number of spans increases.

D ase
In this section the damped case is considered and the natural frequencies and damping ratios are computed

through the complex eigenvalue analysis. Figure 6 shows the relationship between the natural frequencies and
damping ratios. Also Figs. 7 and 8 show the dependency of the natural frequencies and damping ratios on the
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Fig. 10. The modal damping versus the natural frequencies for the sway-permitted case

key parameters in this research. In each figure, the results of three different base conditions are shown together.
The comparison between Fig. 7 and Fig. 4 reveals that the resulted natural frequencies for damped and undamped
cases are conceptually different. Figure 7 shows less difference among the fixed-base, sway-permitted and SR
models. It seems that for complex analysis results, the difference among these different models are negligible
for second and higher modes. Again as done for undamped case, the effect of SSI on the first natural period of
models is shown in Fig. 9 which shows almost the same relationships and tendencies as Fig. 5. However, Fig.
9 shows less difference between the sway-permitted and SR models with fixed-base model. So, it can be
concluded that SSI effect on the natural frequencies of structure will be overestimated in the case of real
eigenvalue analysis. Additionally, the results for two additional modes, related to sway and rocking degrees of
freedom, are completely different in the damped and undamped cases. It can be seen in Fig. 8 that the sway
modes are generally overdamped. Also, the rocking modes are highly damped and the variation of the related
natural frequencies is very high (Fig. 7). In relation to the damping ratio, Fig. 8 shows very high values for the
first mode of structure which decrease for higher modes and finally converge to the material damping in the
structure. This property is seen more clearly for lower shear wave velocities and higher number of spans, which
is compatible with the fact that the radiation damping is higher for softer soil and larger foundations. In order
to show the effect of SSI on the modal damping ratios more clearly, as a simple example, three models with
different number of stories as symbols of short, moderate hight and highrise buildings are analyzed for different
number of spans and shear wave velocities. The results for the sway-permitted model are shown in Fig. 10 as
the damping ratio versus the natural frequency. It can be seen clearly that there are higher damping ratios for
lower number of stories, lower shear wave velocities and higher number of spans. Although for the models
with low and moderate number of stories the damping ratio decreases with the order of modes, for the 40-story
model, it decreases after an initial increase. However, according to the some previous experimental studies (for
example Tamura ef al, 1994) the damping ratio generally increases with the order of the mode. The answer to



this variance lies in the fact that these kind of experimental data are mostly available only for highrise buildings
where usually only the first few modes are achieved. So, they are compatible with the results shown in Fig. 10-

¢. Consequently, using the stiffness proportional damping model which leads to higher damping ratios for
higher modes can not represent the SSI effect properly.

Results of The T r Matrix M

In this section by using the transfer matrix method, the effect of SSI is detected through the construction of
transfer function for a base excitation case. Figure 11 shows the n-th particle's response for the fixed-base and
sway-permitted models according to (11). For showing the effect of the damping model on the natural frequency
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results, two other damping models are used for sway-permitted case. As the first model, a constant complex
damping of 1% is considered for the soil as in the structure, which leads to a system of uncoupled differential
equations. The other one is considered as a stiffness proportional damping model for whole the system with
the damping ratio of 1% in the first mode. It can be seen in Fig. 11 that for the sway-permitted case with use of
cone model, the frequencies related to the peak values are very close to thoes of fixed-base model. However,
the two other models estimate these frequencies to be much less. Additionally, the stiffness proportional
damping model underestimates the peak values related to the second and higher modes because of high damping
ratios for higher modes. These effects can be seen more clearly for structures with low and moderate height.

From another point of view, Fig. 12 shows the response of the lowest, the middle and the highest part of the
building in the sway-permitted case using cone model. As it can be seen, there is a phase difference between
the different parts of the building and the structure actually vibrates with a phase delay. This means that using
damping models, such as proportional damping models, which lead to the real eigenmodes can not be a suitable
approach.

CONCLUSION

In order to grasp the SSI effect on the dynamic properties of structure, a shear building model accompanied by
sway and rocking springs and dashpots based on the cone models' impedance functions was used and the
following results were achieved :

The effect of SSI on the natural frequencies of structure is not so high and especially diminishes for the second
and higher modes. However, the SSI effect on the damping ratio is considerable especially for those modes
whose natural frequencies are closer to those of the sway and rocking modes. This effect is higher for lower
number of stories, larger foundations and softer soil.

The damping models which lead to the real eigenvalue analysis, underestimate the natural frequencies of the
system and can not be a suitable choice. Attention to this point is more important for lower number of stories.

Although for the first modes of tall buildings the damping ratio increases for higher modes, generally the
higher modes have lower damping ratios. This can be seen clearly for low and moderate number of stories and
also for higher modes of highrise buildings after the initial increase. This means using the stiffness proportional
damping model which leads to higher damping ratios for the higher modes can not be a suitable approach.
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