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ABSTRACT

Records of past strong motion are often used as the ground motion input in earthquake analysis and design
of buildings. The design of underground structures. however, requires more than just the time history at
any particular point on the earth’s surface. It also requires the space-time variation of the ground motion.
The objective of this paper is to develop a method for simulating a space-time function, which produces the
assumed cross-correlation function and includes the observed record.
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INTRODUCTION

In the dynamic analysis and design of long underground structures such as tunnels, pipelines and buried
pipes, the structure, soil and basement rock should be modeled and the seismic input motion should be
determined at the soil or basement rock level as shown by Fig.1. Engineers are required to give input
seismic motions at several points along the underground structure because the structural response is greatly
affected by relative ground motion.
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Fig.1. Physical model of undergiound pipelines (after Kubo, 1981)

From this point of view, estimating simultancous mation is an important problem to be solved, and tech-
niqucs to simulate the space-time variation should be developed. In previous structural designs, records



obtained from the one site near epicenters caused by carthquakes, such as the Imperial Valley, Taft, Tokachi-
oki and Niigata earthquakes, have been used. Further, one of the following has frequently been assumed in
cstablishing relative motion and in estimating space-time variation.

1) Onc previously observed time history propagating horizontally with a constant finite propagating speed
without distortion of wave form.

2) Waves propagating horizontally with an infinile speed. Therefore, input motions arc the same at all
locations including their ammival times.

Even when 1) is assumed, a problem still exists as to what value should be used for honzontal wave speed.
This value differs greatly depending on whether the shear wave velocity of the surface layer is used as
indicated by the standards for gas pipelines in Japan or whether the value estimated from calculated cross-
correlation functions using array records is used. For example, at alluvial sites, shear wave velocities
are several hundred m/s, while the latter is more than one thousand m/s (Tamura ef al., 1974; Tsuchida
and Kurata, 1975). Using conventional theory (Sakurai,1971) strain on the pipeline can be approximately
estimated by

(Strain on pipeline) = (Particle velocity of soil)/(Horizontal speed of wave propagation). (1)

[t can be understood that these two Kinds of wave speeds will give us strains which differ as much as ten
times. Even though the latter speed seccms more rational, because distortion in the wave form has been
neglected, strain will consequently be undercstimated (Kawakami and Sato, 1983).

Assumption 2) has mainly been applied to sites with greatly varying horizontal soil structures. However,
at some sites where horizontal soil structures have been found to be uniform as a result of geophysical
cxploration, vertically incident seismic waves do not create strain on the ground surface. Consequently,
assumption 2) is also unsafe in estimating such sites (Kawakami and Sato,1983). In addition, distortion in
the wave form has been neglected in both assumptions 1) and 2). However, in recent studies based on an
analysis ol seismic array records (Kawakami and Sato,1983), distortion in the wave form has been shown
to have a considerable effect on ground strains.

Several methods have been proposed to solve the above-mentioned problems. Shinozuka et al. (1976),
Naganuma et al. (1987), Hoshiya et al. (1980), Haruda et al. (1988) and Deodatis e7 al. (1988) developed
simulation methods for space-time variations with cross-correlation functions and cross-spectra equal to
assumed ones. These studies were based on the random process theory, and space-time variation is inter-
preted as a function of time lag, the distance between two points, frequency and wavenumber. Further,
simulation was conducted by taking wave propagation and distortion into consideration.

However, space-time variations obtained by cach of these methods have not directly taken observed records
into account, and consequently are too unrealistic and unconvincing to be used in actual design. Therefore,
these simulated waves have not often been used as inpul motions, and one observed record and assumption
1) or 2) are still trequently being used in practice.

Such a tendency 1s also true in the design of buildings, and observed actual records, such as those from
Imperial Valley, Taft and Tokachi-oki, have often becn used as input seismic motions rather than simulated
time histories based on random process theory. This tendancy is due to the idea that the observed must be
more realistic than the simulated. Furthermore, in the design of underground structures, not only observed
time history records but also space-time variations around the structure are required, because relative mo-
tion is the main causc behind strain induced in the structure. Because of reasons such as these, one seismic
record is insufficient in designing, and space-time variations are still required. In particular, several repre-
sentative space-time variations including well-known observed records are believed to be essential when
designing underground structures such as in butlding extensions.

The first author has already proposed a method using a double Fourier series {or the rational simulation of
space-time variations considering the distortion of wave forms during propagation (Kawakami,1989). The
objective of this paper is to develop another method extending the theory of multiply-correlated random
processes instead of the double Fourier series and to demonstrate the effectiveness of the proposed method.

In this paper, space-time variation is represented by multiply-correlated random processes 1/;(¢) in which
¢ and 7 denote location and time, respectively. Also, similar to previous papers (Kawakami,1989,1990;



Vanmarcke and Fenton, 1991; Kameda and Morikawa, 1992; Hoshiyva and Maruyama, 1993; Noda ¢/ al.,
1994; Kiyono et al., 1994), the following conditions have been assumed for simulated space-time variation.

Condition A: Auto-correlation functions of both simulated space-time variation and observed record should
be identical. Based on the auto-correlation function of the observed record, wave propagation speed
and the degree of wave distortion, cross-correlation functions or cross-spectra have been assumed.

Cross-correlation functions of simulated space -time variations should also be identical with assumed
ones.

Condition B: Simulated space-time variations should include the observed record.

In this paper, regarding condition A, cross-correlation functions have been assumed to represent wave prop-
agation in the positive direction and a decrease in correlation with increasing distance between two points.
Concerning condition B, space-time variation whose component {/;(1) matches the observed record has
becn simulated. A case study is presented using the El Centro record during the Imperial Valley earth-
quake, satisfying the above two conditions.

THEORY

Simulation of Space-time Variation with Continuous Cross-spectra

Space-time variation of earthquake ground displacement is expressed by m: cross-correlated stochastic pro-
cesses {;(1) (7 =1,...,m), where:and ¢ denote location and time, respectively. The formulation presented
in this paper is applicable not only to displacements but also to velocities and accelerations.
Shinozuka and Jan (1972) have shown that stochastc processes {/;(1) (¢ = 1,...,m) can be expressed
by using one-sided continuous cross-spectra Sy (... w), where w and v, respectively denote the angular
frequency and distance between two points, as follows.
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where ¢,,, are mutually independent and umiformly distributed random variables from zero to 27, w,, is the

nth discretized angular frequency,
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and 7 is the duration of the record. In this paper, the constant component has been neglected, and the sta-

tionarity of the random process has been assumed over the period from O to 7.
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where * indicates the complex conjugate, and
Sii(w)Aw = Syr(zoliy,w)Aw, (5)
where .|;;=.r; —., Is the relative distance between two points ¢ and j. Further, term 6,,(n) in (2) is given by
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where Re, I'm indicate real and imaginary parts, respectively.

Power Spectrum of Observed Record
As mentioned in condition A, simulated spacc-time variation should have the same power spectrum as the
observed record. The Fourier series expansion of the observed record is given as

N
Fit) = Z {a,, cos(w,t) + b, sin{w,t)} . (7)

n=l1

From (7), ground motion at time ! + 7 can be expressed as
Flt+7) = Z [a, cos{w,( +7)} + b, sin{w, (t+7)}], (8)

where 7 is time lag. By considering the product of £ {) and (1 + 7) and taking the temporal average from
0 to T, auto-correlation function Ry+(0. 7) is obtained as

S AR .
Bxr(0.7) = F(t) - Fli+7) = 3 > (ad + b)) cos(w,T), (9)
n=1
where — indicates the temporal average. The Fourier transform of (9) yields the two-sided power spec-
trum
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where é(w) denotes Dirac’s delta function. Thereforc, the one-sided power spectrum .S7(w) can be given by

Sp(w) = Z<f,,,+bi ). (11)
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By integrating (11) from w,, — Aw/2 tow, + Aw/2, a relationship can be established between the one-sided
power spectrum and Fourier coefficients.
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Assumptions of Cross-spectra

Simulated space-time variation should have an identical power spectrum to that of the observed record as
mentioned in condition A, and the correlation between two simulating points should decrease with wave
propagation. From previous studies (Ishi1,1981; Suwada,1988; Katayama er al., 1990) on comparisons
between two actually observed time histories, correlation is known to decrease with increasing distance
between sing frequencies.

Hence, one-sided cross-spectrum Sy ¢ (vg,w) 18 assumed as

lro|/c). (13)
where A() is a function of frequency |w| and travel time |a¢|/c. Further, ¢ and Sy (w) are the horizontal
speed of the propagating wave and the observed onc-sided power spectrum, respectively. Function A() is
called coherency, and by referring to a previous study (Ishii,1981), il can be assumed to be written as

(2rc)}, (14)

where « denotes the degree of distortion of time history due to propagation, or the distortion coefficient
(Kawakami and Sato,1983; Kawakami, 1989,1990). By definition, a zero value for « is free of distortion,
whereas a large value for o greatly decreases the correlation between the two time histories.

Sxr(2o,w) = Spiw) exp(—twao/c)A(|w

) = exp{—a

Cross-spectrum of Space-time Variation



Multiplying both sides of (13) by Aw, the relationship between line cross- and power spectra can be given by
Sy roswn) Aw = Sp(w,) Aw - exp{—alw,||rol/(27c) } exp(—i w, 2/ €). {15)
Then, substituting (12) into (15), the cross-spectrum of space-time variation yields
(a +07)
9

Syrlrg,wy) Aw = cexpl—a|wa||ro]/(27¢) } exp(—7 wiag/c). (16)

An assumed corresponding cross-correlation function can also be obtained by the inverse Fourier transfor-
mation of the two-sided cross-spectrum.
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Space-time Variation Including Observed Record

Regarding condition B, first process {/; (1) has been chosen from m processes {7;(¢) (1 =1,...,m)in(2),

N
Ui(t) = Z [Hyy(w, )V'FSL:\ /Ecos{u;h/ +61(n) + ¢1a ), (18)

n=1

and it has been matched with the observed record.

In the above equation, terms |H,, (w, )V Aw| and ;,(n) can be estimated as follows. From (4) and (5),
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Substituting (12) into (19) and (20) and ensuring that Sp(w, )Aw is not a negative value, one derives
R H i (w, ) VAL] = /(a2 + 02)/2, (21)
L, Hn(w, VAw] = 0. (22)
Therefore,
Hiy(wa) VAG] = /(a2 +2)/2, (23)
By1(n) = 0. (24)
Finally, time history {7 (¢) yields
N _
HOEDY \/uT~ b2 cos(w,t + ¢1,,). (25)
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However, the Fourier series of the observed record given by (7) can be rewritten as

N
F(t) = Z Ay - cos(wnt + 3,), (26)
n=1
where
Ay = B (27)

3, =tan Y(=b,/a,). (28)



From a comparison between (25) and (26), ¢, in (13) can be established as
Pla = 3, = 1.1.11_1(—1)n/(1,n). {29)
After all, if ¢y, in (29) is used, simulated time history {/;(¢) in (2) is the same as the observed one.

In previous studies on methods for unconditional simulations of space-time variation, all values of ¢;,
(i = l....m. n = 1,..., N) have been simulated as mutually independent and uniformly distributed ran-
dom variables. However, in this study, ¢, (n = 1...., N} have been determined by (29) to satisfy condition
B, and remaining members ¢, (i=2,...,m. n=1..... N) have been simulated as mutually independent

and uniformly distributed random variables.

Summary of Algorithm of Developed Method

The developed simulation method for space-ume variation including the one observed record can be sum-
marized as follows:

i) Calculate Fourier coefficients, a,, and §,. by expanding the observed record into a Fourier series as
shown by (7).

ii} Choose site location z; where the time history should be simulated as the :th random process.

ii1) Assume a cross-spectrum by using (16), after estimating horizontal speed of propagating wave ¢ and
distortion coefficient .

iv) Factor the cross-spectral matrix into two triangular matrices as shown by (4), and estimate |H;, (w, )V Aw|
and 0,.(1).

v) Calculate ¢y, (n =1, ..., /¥) by using (29).

vi) Generate mutually independent and unmformly distributed random variables for values of ¢;, (+ =
20..am. o n=1.,N).

vii) Calculate space-time variation by using (2).

SIMULATION USING IMPERIAL VALLEY EARTHQUAKE RECORD

In this scction, numerical results are presented using records taken from the El Centro site during the [m-
perial Valley earthquake (May 18, 1940)). These records are frequently used for the dynamic analysis of
structures. The maximum acceleration of the NS component is 341.7 cm/s?. The displacement time his-
tory estimated from the numerical integration ol the acceleration record has also been open to the public as
shown by Fig.2 (Hudson ef al., 1971), and thc maximum valuc of displacement is 10.9 cm. Dunng simu-
lation, the first 48 sec of the record was used, and the first to the 29th Founier coefficients were calculated.

Wave honizontally propagating speed ¢ and distortion coefficient o have respectively been assumed as 1, 000
m/s and 0.2 x 27. The value of the distortion coefficient was determined based on Ishii’s study (1981). Here,
the corresponding cross-correlation function given by (17) has been assumed as shown by Fig.3(a). The
thick line at .y, = 0 in Fig.3(a) indicates the auto-cotrelation function of observed time history.

Time histories have been simulated at 31 points that are distributed over —6 to +6 km with an equal distance
between adjacent points of 0.4 km. Among time histories {/;(/) (¢ = L,...,31), subscript i = 1 in {/,(t)
denotes the recording point at » = 0, and even and odd numbers of /(2 < 7 < 31) denote simulating
points located at positive and negative sides of .+ = (), respectively. The distance between the simulating
point and recording point & = 0 increases with incre ising subscript i.

Figure.4(a) shows space-time variation simulated by following the algorithm summarized previously. It
should be noted that the simulated time history at point z=1 (@ = 0) indicated by the thick line in Fig.4(a) is
completely identical with the observed record shown in Fig.2, therefore satisfying Condition B. Figure.4(b)
shows cross-correlation functions, in the space and time domain of —24 < 7 < +24sec and -6 < g <
+6km, calculated from the simulated space-time variation sample in Fig.4(a).

In Fig.4(b), 1t should be noticed that the cross-correlaiion function of this simulated sample is nearly, but not
exactly, equal to the assumed one shown in Fig.3(a). However, their cnsemble average should be identical
with the assumed cross-correlation function. To verily this, simulations were conducted one hundred times
and the ensemble average was calculated. The results are shown 1n Fig.3(b}, and it can be noticed that they
are identical to those in Fig.3(a).
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Fig.2. Observed wave during Imperial Valley earthquake (1940)
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Fig.3 (a) Assumed cross-correlation function and (b) ensemble average from 100 samples
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Fig.4 (a) Simulated space-time varnation and (b) its cross-correlation function

In this section, several examples of the application of the method developed in the previous section have
been demonstrated, and the effects of parameters used have been illustrated. However, the values of pa-
rameters are only based on a few previous studies. To utilize simulated space-time variation in the design
of structures, the values of these parameters should be investigated in more detail by using a number of
seismic array records observed under various ground conditions.

CONCLUSIONS

In designing underground structures to withstand earthquakes, the estimation of space-time variations around
the structure is an important problem to be solved. The objective of this paper has been to simulate space-
time variations that include observed records.

In this paper, conditions A and B have been considered, and a new method has been developed to simulate
space-time variation based on the theory ot multiply-correlated random processes. In the case study, the
Imperial Valley carthquake record was used, and cross-correlation functions have been assumed so that
seismic waves propagate in the positive direction and correlation decreases with wave propagation. Under



these assumptions, space-time vanation has been simulated and the following conclusions have been de-
rived:

1) Simulated space-time variation includes the observed record;

2) The auto- or cross-correlation function of the simulated space-time variation sample is nearly equal to
the assumed one; and

3) Ensemble average of the auto- or cross-correlation function of the simulated space-time variation sam-
ples is exactly equal to the assumed one.
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