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ABSTRACT

The eigenfrequencies of the soil are mainly determined by the local soil conditions. They can be analytically
calculated by solving the wave equation in inhomogeneous or layered media. However a stochastic approach
seems to be necessary, because the parameters of the soil system can only be determined in a stochastic
sense. Thus the solution of the stochastic wave equation is sought. In this paper the wave equation is
transformed in such a way that the transition probability is governed by the Fokker-Planck equation. This is
an interesting alternative method to the usual perturbation or stochastic Green’s function method, because
not only the first moments but the complete stochastic behaviour of the solution process can be achieved. As
a case example the Fokker-Planck equation for the one-dimensional harmonic scalar Helmholtz equation is
derived and numerically solved with the Finite Differences method.
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INTRODUCTION

Predicting the eigenfrequencies of the soil is an important task in the framework of earthquake engineering.
The concentration of energy of an earthquake in the vicinity of the natural frequencies of man-made
structures can lead to severe damages. Empirical observations show that often power spectral densities
during different earthquakes or aftershocks at the same stations show significant stable peaks. In fig. 1 two
normalised PSD of strong motion records (NS-component) recorded at INCERC station in Romania during
the Vrancea 1977 and 1986 earthquake are shown. The first two peaks of the spectrum nearly coincide
showing the dominant site effects (Lungu et al., 1994). Theoretical investigations (Zsohar and Scherer, 1995)
show that the eigenfrequencies of the soil are mainly determined by the local soil system and that the
location of the source is of minor importance.

Because the parameters of the local soil system, i.e. wave velocities and damping cannot be determined for
any given location in a deterministic sense, uncertainties of the local soil conditions have to be taken into
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Fig. 1 Power Spectral Densities (NS) of INCERC-station during 1977 and 1986 Vrancea earthquake in
Romania

account. Thus it is a reasonable attempt to model the soil as a random medium, i.e. to model the parameters
of the soil as stochastic processes or random variables. In a first approach to this problem (Zsohar and
Scherer, 1995) Monte Carlo Simulations for the damping, the wave velocities, the layer thickness’ and the
angle of inclination of the wave trace into the bedrock have been carried out.

The interest of this research is focused on a generally applicable model, which is able to predict the
eigenfrequencies of uncertain soil conditions. Therefore the stochastic wave equation has to be solved. The
methods available in the literature can be classified into analytical and numerical methods. Among the first
ones are approximate methods like the perturbation method (Sobczyk, 1985), the smoothing method (Karal
and Keller, 1964; Hryniewicz, 1989) or the stochastic Green’s function method (Manolis and Bagtzogluo,
1992). Among the latter ones are stochastic Finite Elements (Waubke and Grundmann, 1994), stochastic
Finite Differences (Frankel and Clayton, 1984) or Monte Carlo Simulations. A major drawback of all these
methods is that they allow to determine the mean wave of an ensemble of waves only. Some of them can
calculate the second moments, e.g. the Born approximation (Sobczyk, 1985), but neither of them the
probability density function.

In this paper an alternative method of solving the stochastic wave equation will be presented, which allows
to calculate the probability density function of the amplitude of the wave. It is based upon a work of Frisch
(1968). The basic idea is to give a formulation of the scalar wave equation in such a way that the transition
probability is governed by the Fokker-Planck Equation (FPE). Therefore all stochastic processes have to be
assumed Markovian. In a first step the one-dimensional harmonic scalar wave equation (Helmholtz equation)
in one layer, in which the S-wave velocity is randomly disturbed, is considered. The corresponding four-
dimensional FPE is solved numerically with the Finite Differences Method. The results for different
frequencies are presented and compared. This method can be easily extended to the case of layered soil by
the usual transfer matrices. For the case of randomly layered soil the necessary tools can be found in
(Kotulski, 1990).

SCALAR STOCHASTIC WAVE PROPAGATION

Dealing with scalar seismic waves leads to a wave equation with a forcing function representing the
excitating source.

V2G(r,r5) + k3n? (r)G(r,rg) = -8(r - rg) 1)
In this Helmholtz equation r is the position vector, rg the source vector, G the Green’s function, k, the wave

number, 5 the Dirac delta function and n the index of refraction of the medium. An invariable index, i.e. n(r)
= 1 leads to the case of homogeneous wave propagation. In an unbounded homogeneous three-dimensional
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medium with a single impulse as source function (Dirac delta function) this problem can be analytically
solved. The solution for homogeneous boundary conditions is the Green’s function

ik, [r-rs]

G(r-rg) = 2)

In the case of a variable index of refraction only few closed-form solutions exist. Many recent work (Li

1990) has been done for the case n(r)=+1+ Az, where z is the vertical component and A is a small
negative factor.

47t|r -rg|

Wave propagation in a random medium is characterised by a stochastic index of refraction n(r)=n(r,y).
Karal and Keller (1964) solved this problem for the mean wave of an ensemble of waves by a second order
perturbation method (smoothing method). Manolis (1992) gave a perturbation expansion for the stochastic
Green’s function. Chu et al. (1981) calculated a solution with the Laplace transform method under the
assumption that the shear coefficient is an ‘Uhlenbeck-Ornstein Process’. A common result of these
researches is that the mean motion of a stochastic wave is different from the solution of the wave equation
with the mean properties, although the waves are linear. An energy decay emerges by the scattering of the
waves through the inhomogeneities of the medium. This is manifested by a non-empty imaginary part of the
amplitude.

The one-dimensional scalar (SH) wave equation of interest reads
1
Fax (X, 1) = — P (x, 1) 3)
o

with wave velocity o. When looking at the eigenfrequencies of random soil it is sufficient to consider
harmonically excitated layers. Considering harmonic waves with frequency o

W(x,0,1) = F(x,0)-¢* “@
and omitting the time factor on both sides the wave equation simplifies to
2
®
P (x) = — (%) ®)
o

The wave can now be analysed separately for each frequency ®; because of the principle of superposition.

Stochastic Case
2
The approach chosen follows the work of (Frisch, 1968). With wave number k% = co_2 the Stochastic
o

Helmbholtz Equation (SHE) in a homogeneous, isotropic, stationary random medium is

42

d—2W<x)+k%n2<x)W(x)= g(x) (6)

X

¢ n is the index of refraction. As the interest of this research is focused on stochastic wave propagation,

nz(x) =1+ u(x) is a real homogeneous, isotropic random function with unit mean square value. It
represents a random disturbation in the medium, i.e. a fluctuation in the wave velocity.

e ¢ can be chosen as the Dirac delta function representing a point source or taken to be zero. In the latter
case the excitation of the medium is to be fulfilled by some boundary conditions.

The Helmholtz equation describes the propagation of a wave ¥ with a special frequency o, from the source
(x=0) to the receiver (x=L). The solution of the Helmholtz equation at x=L is the amplitude A(w;) of the
wave at the receiver. Thus the bigger the amount of the amplitude of the special ; is the larger is the
amplification function of the layer at this frequency. The maximum amplitude corresponds to the dominant
eigenfrequency of the layer. The solution of the stochastic Helmholtz equation is the probability density
P(x; p(x), P(x),P'(x)) at x=L. Having a solution of the SHE means having the probability that the
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corresponding amplitude is less than a certain value. Considering all interesting frequencies ; the one with
the maximum probability can be found.

M)

Fig.2 A scalar wave P(x) propagates along the x-axis with wave velocity o, which is randomly disturbed
by a stochastic process p(x)

Procedure. Taking the index of refraction as a stochastic process the SHE can be splitted into a constant and
fluctuating part
42
d—z‘I’(X)+k%(l+u(X))‘P(X)=0 @)
X

With given initial conditions for ¥(0) =¥, and ¥'(0) =¥} this equation is a linear random differential
equation. The stochastic process p(x) is assumed as an Uhlenbeck-Omstein process, i.¢. a centred, stationary,
Gaussian and Markovian random function with spatial correlation function

x|
Efp(x)p(x)}=g% L ®)
leading to a linear differential equation with Markov coefficients. The simplifications
e =1
o p(X) - ep(x)
lead to the simpler correlation function

Efuop(x)}=e >
and Helmholtz equation
2
%W(x)+k%a+eu(x»\v(x)=o ©)

Frisch showed that such a linear (Markovian) random differential equation possesses an associated transition
probability density function satisfying a FPE. In order to apply this equation, two new variables

1
y1 =¥ and y,= k—\P'(x)

0

are introduced into the second order wave equation leading to the system of first order equations

=310 = ko¥2() (10)
X

329 = KB {1+ () () =0 ()
or in state vector form

d [yl(x)] _ [ 0 k0]|: n(x)] a2
dx|yo(x)| |-ko(l+en(x)) 0 | yr(x)

p(x) is centred, stationary and Gaussian, thus the corresponding probability density is

W)= J;—RCXP(—%HZ) (13)
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a stationary normalised solution of the FPE
2

8 8 8
—W(xp)=—@W)+—W 14
o GH) a“(u ) o’ (14)

with drift my=p and diffusion by~1.

The drift-vector for the wave equation is

[ml(x)il _ koy2(x) (15)
my(x)] | —ko(l+ep(x))yi(x)

The diffusion coefficients by, , ..., by; equal zero, for there is no excitating white noise process. Combining
this there exists a FPE for the process 1, ¥,, ¥,

) d 82 d d

— P51, ¥1,¥2) = —(MP) + — P ——(koy2P) + —(ko(1 + ep)y,P (16)
ox ou 6;42 oy 0y ( )

with initial condition

G 1w

—P(O; 1, y1, = e 2 8(vy —yi(0)d(y, —y,(0 17
o PO Y1Y2) = = (1~ ¥1(0))3(y2 ~ y2(0)) (17)

No solution of this FPE is known. Frisch gave a solution for the first moment of the displacement and the
velocity only. But it is clear that the usefulness of the FPE lies in the fact that it determines with given initial
conditions the complete probabilistic behaviour of the solution process, namely the probability density
function. Deriving the FPE and then solving only for the mean value is some kind of a contradiction. Thus in
this paper an attempt is made to solve the FPE numerically.

NUMERICAL SOLUTION OF THE FOKKER-PLANCK EQUATION
Carrying out the differentiation of eq. (15) the FPE can be written as

2

d d 8 B d
—P(x1,y1,¥2) =P+pu—P+—=P-Kkoy, —P+ko(l+ep)y; —P (18)
ox 6” 6“2 6y1 5y2

Discretization. The different derivatives are approximated by their forward differences, e.g.

P(X; 1, ¥1,¥2) _ P+, y1,¥2) = POS L Y1, ¥2)

X h (19)
leading to a Finite Differences scheme which propagates into x-direction
P(x+h;p,y1,y2)=P(x;1, 51, ¥2)
. h{ PO y1,y,)+ n PEEEKs yl,yzlz— P 1, Y1,Y2)
L PR+ Ky, ¥2) = 2PCS R, Y1, ¥2) + PSR~ K, ¥1,Y5) (20)

k2
P(x;p,y; +1, - P(x; 1, 795 P(x;pn,¥1, ¥, + m)— P(x; 0, vq,
gy, DB Yzi (SH.Y1:92) 4 4 1 4 gyy, PSR Y132 nz (%1, ¥1,¥2) }
h,k,I,m are the steps in the x, p, y, and y, directions respectively. The following points need special care:

1. Range of definition of the four variables
2. Initial conditions (delta functions)

3. Boundary conditions

4. Stability

1

. In order to solve this equation the ranges of the different variables have to be determined.
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e As x is the spatial coordinate of the wave equation, it determines the travel path of the wave through one
layer. Thus it starts at 0 and ends at L, e.g. L=10 m.

¢ y, represents the displacement amplitude, which is normalised to be in range of [-1, 1]

e vy, represents the velocity, thus the same range [-1, 1] as for the displacement is assumed..

e p is a stochastic process (SP) with mean 0 and standard deviation 1. Thus a range of [-5,5] suffices.

2. The initial conditions are the normal distribution for p and the delta functions for y, and y,. The delta
function has to be approximated with a discretised function keeping the basic properties. It must pick the
values of the normal distribution at the initial values for the displacement and velocity and must set all other
values to zero. The second property is that the integral over the delta function must be unity. Therefore a
normalising factor for the density values has to be introduced. The stochastic interpretation of this initial
conditions says that the probability that the wave gets in a state, which is not the initial state, is zero.

3. The discretization of the FPE means a transformation from an infinite region into a limited grid. Therefore
at the maximum and minimum values of the grid values for the transition probability have to be prescribed.
The natural conditions are to set these values to zero, because the probability that the wave gets into a state,
where e.g. the amplitude is bigger than the maximum amplitude clearly is 0. As the discretization steps
forward into the x-direction, for x only the initial conditions has to be prescribed.

4. An extensive theoretical stability investigation has not been carried out. Testing various grid steps a step
size of 107 to 10™ for the spatial coordinate has been chosen. Due to stability necessities the other three grid
steps have to be much larger, i.e. greater than 0.1. If a finer discretization in the other three variables is
needed, the spatial grid step size has to be decreased.

Results

Four different frequencies have been chosen, i.e. 1, 2.5, 5 and 10 Hz representing the low to intermediate and
high frequency range concerning buildings. In fig. 3 the probabilities for the displacement to be less than 0.5
and 0.2 are plotted. The initial conditions are y,(0) = 1.0 and y,(0) =0, i.e. ¥(0)=10 and ¥'(0)=0. The
SH-wave velocity is assumed as 200 m/s. For the numerical calculations the following grid steps have been
chosen: Ax=0.0001m, Au=0.25, Ay,=Ay,=0.1. The CPU time needed on a HP 715-100 workstation was
approximately 40 h for 108 iterations for each frequency.

The amplitudes of the higher frequency wave clearly are decreasing faster. The reason for this is that the one-
dimensional Green’s function for the deterministic homogeneous problem follows the cosine function
without a geometrical 1/r damping as in the three-dimensional case. Thus the stochastic case shows the same
effects as the homogeneous one. In fig. 4 the probability densities P(x; ¥(x)) for a frequency of 1 and 10 Hz
are plotted against the displacement and the spatial coordinate. The natural boundary conditions at
W(x) = t+lcan be seen. The common peaks at the beginning (x=0) are caused by the delta function at
¥(0) = 1. For the 1 Hz component a second peak arises at $0m.

mparison of low igh frequen:

The influence of the stochastic variation of the wave velocity is now analysed in greater detail for the 1 Hz
and 10 Hz cases. The Green’s function for the one-dimensional homogeneous case is known (fig.5). The
homogeneous case says that the displacement is less than 0.5 at 33.33m. The analogous probability
P, (¥(33) < 0.5) equals 0.392. For the 10Hz component the displacement will be less than 0.5 at 3.3 m.
Piou'F(3.3) £ 0.5) is slightly smaller, i.e. 0.390. The same is now done for the probabilities of the
displacement to be less than 0.2, i.e. Pyy,(‘¥(43.0) < 0.2)=0.346 against P,,,(¥(4.3) < 0.2) = 0.344 and for
the probabilities to be less than zero, i.e. Py, (W(50) < 0)=0.392 against P,qg,(¥(5) < 0) = 0.390. The
probabilities of the corresponding 2.5 and 5Hz cases always are in between the extreme cases. The
corresponding mean values show this effect (fig.5) more clearly: E(¥,y,(33))= 0.577 against E(¥,4,(3.3))=
0.584 and E(¥;;,(50))= 0.113 against E(W,on,(5))= 0.132. Two consequences can be drawn: First, the



S D, it -

random disturbation of the medium acts slightly different on the different frequency parts of the wave, i.e.
the lower frequency part amplitude is more decreased than the higher frequency part. Second, the mean value
of the amplitude is not the solution of the wave equation with mean properties (fig. 5), because in this case
e.g. E(¥115,(50.0)) and E(¥}¢1,(50.0)) had to equal zero. The first effect seems negligible and can also be
caused by numerical errors because of the different length of the travel paths. The second effect is much
more important and can be explained by the scattering of the waves through the inhomogeneities in the
medium (Chu, 1981).
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Fig.3 Probability of the displacement W(x) to be less than 0.5 and 0.2 (initial condition ¥(0)=1.0 and
¥'(0)=0) for four different frequencies (1,2.5,5 and 10 Hz) over the travel distance x [m]. The
wave veloc
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Fig. 4 Probability density functions of the displacement P(x;¥(x)) against x [m] and W(x) (initial
condition ¥(0)=1.0 and ¥'(0) = 0) for two different frequencies (left: 1 Hz for xe[0,100m], right:
10 Hz for xe[0,10m]). The wave velocity «a=200 m/s is disturbed by the SP p(x).

CONCLUSIONS

In this paper the problem of wave propagation in a random medium with the aim of determining the
probabilistic behaviour of the eigenfrequencies of random soil was investigated. The approach chosen shows
the need for a stochastic treatment of the propagation of earthquake waves, because the effects of the random
disturbations of the medium act in a non-linear way. In contrast to the most methods available in the
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literature the formulation with the aid of the FPE allows to determine the probability density function of the
solution process. A minor shortcoming of this method is the fact that the stochastic process disturbing the
medium has to be assumed Markovian. The major drawback is the extreme high computational efforts for
solving the four-dimensional partial differential equation (FPE). Describing realistic models one has to resort
to at least the two-dimensional problem. Therefore the approach solving the FPE seems to be not as
attractlve because in this case the CPU-time is approximately the second power of the one-dimensional case,
ie. 40° hours for the HP715-100. Fast supercomputers and optimised algorithms will be favourable.
However, it is still an open question whether the solution of the FPE is faster than sophisticated simulating.

1Hz ¥ (%) 10Hy
T — G0
0.584 - —
- PGLD 0.5 Py e
0432 | s
* 0 33 5.0 N x

Fig. 5 Homogeneous solution G(x) (solid line) and mean solution E(G(x)) (dashed line) for the 1 Hz (left)
and 10Hz (right) components

The results achieved for one layer will be extended in an ongoing research to layered soil. The source will be
implemented as a band-limited white noise process as proposed in (Zsohar and Scherer, 1995). This leads to
an It6 differential equation (Soong, 1993), whose transition probability again is governed by the FPE.
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