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ABSTRACT

Response spectra are frequently used by engineers and researchers to evaluate the effect of earthquake
ground motions to structures. The response spectra, however, are applicable while the response of
the structure remains in an elastic range. Since the response exceeds the elastic limit in case of severe
earthquakes, the method to evaluate the effect of earthquake motions to structures taking into account
the inelastic behavior of the structure are preferable. This is to propose a new method to evaluate
the earthquake ground motions considering nonlinear behavior of the structure, i.e. yield base shear
coefficient spectra.
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INTRODUCTION

-

Recently, because of the intense network of strong ground motion observation and the development
of strong motion seismometers, it has been obtained that a large number of earthquake records whose
maximum acceleration sometimes exceeds 1g (where g is the gravitational acceleration). The damage
caused by the earthquake, however, does not always coincides with the maximum acceleration or
velocity of the ground motion. In order to interpret the ground motion, response spectra are frequently
used by engineers and researchers to evaluate the effect of earthquake ground motions to structures.
The response spectra give more information than the maximum acceleration or velocity. The response
spectra, however, are applicable while the behavior of the structure remains in an elastic range. Since
the structural response often exceeds the elastic limit in case of severe earthquakes, the method to
evaluate the effect of earthquake motions to structures taking into account the inelastic behavior of

the structure are preferable.

Some research has been done previously on inelastic response of systems subjected to earthquake



Newmark (1960) indicated that the respomse of elasto-plastic systems is closely related to the re-
sponse of corresponding elastic systems having the same initial slope of the load deformation curve.
The maximum accelerations in the elasto-plastic systems, and consequently the design force for such
systems, can be obtained as the corresponding quantities for elastic systems multiplied by a reduction
factor which depends on the permissible plastic deformation. Riddell (1980, 1995) proposed vari-
ous forms of inelastic spectra for seismic design, considering the effect of damping, type of material
nonlinearity, and the local soil conditions.

The study in this paper is based on the previous studies, although the main objective is aimed at
proposing a new method to evaluate the earthquake motions considering the behavior of the structure
up to its collapse, i.e. yield base shear coefficient spectra, which explain the damage more rationally
than elastic response spectra or inelastic design spectra already proposed.

ANALYTICAL MODEL AND PROCEDURE

Considering that the structure can collapse due to P-delta effect even if it has infinite ductility, the
analytical model is chosen as follows: It is a single degree of freedom (SDOF) system as shown in
Fig. 1 which takes into account P-delta effect. The equation of motion is:
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where ¢ is the rotation angle, ¢ is the fraction of critical damping, T is the natural period, M(¢) is
the restoring moment at the base, r is the height to the mass, X and Y are the horizontal and vertical
acceleration of the ground motion, m is the mass and g is the acceleration of gravity. The fraction of
critical damping is 0.05 for the elastic analysis and the elastic range of inelastic analysis.

In order to study the effect of earthquake ground motions to collapse structures whose ductility is
infinite, the restoring moment for the inelastic analysis is perfect elasto-plastic which means that the
ductility of the structure is infinite. But the structure can collapse due to P-delta effect. The yield
level is gradually decreased until the model collapses. The collapse is assumed to happen when the
rotation angle ¢ reaches 7/2. The maximum yield level that results in the collapse of the structure is
the yield base shear coefficient.

Multi-story buildings should have been treated as multi-degree-of-freedom (MDOF') systems. But the
collapse mechanism of the most ductile multi-story building is the one that yield hinges are formed
at the end of beams. Therefore, the multi-story buildings are treated as SDOF systems as shown in
Fig. 2. The period T'(s) is taken as T = 0.1N where N is the number of stories and the story height
is 4 meters. The story number analyzed is from one to forty (T' = 0.1 ~ 4.0s).

The input ground motions are El Centro 1940 NS (0.34g), Mexico-SCT 1985 EW (0.17g), Kushiro 1993
NO63E (0.71g), Hachinohe 1994 N164E (0.42g), and Kobe 1995 NS (0.82g). The input ground motions
are listed in Table 1. Kushiro record was obtained during the 1993 Kushiro-oki Earthquake through the
network of Building Research Institute (BRI) at Japan Meteorological Agency (JMA) Observatory in
Kushiro. Hachinohe record was obtained during the 1994 Sanriku-haruka-oki Earthquake at Hachinohe
City Hall. Kobe record was obtained during the 1995 Great Hanshin Earthquake at JMA Kobe Marine
Observatory. All input ground motions are analyzed with a vertical component simultaneously.



Fig. 1 SDOF analytical model
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Fig. 2 Equivalent SDOF for MDOF

Table 1 Input ground motions

Earthquake Year Comp. Max. Accel. Max Vel.

Record (gal = cm/s?) (kine = cm/s)
El Centro 1940 NS 341.7 334
UD 206.3 8.2
Mexico SCT 1985 EW 167.8 60.5
UD 364 9.0
Kushiro 1993 NO63E 711.4 34.2
UD 363.4 14.8
Hachinohe 1994 NI164E 415.9 44.5
UD 118.7 8.7
Kobe 1995 NS 817.2 90.2

UD 332.8 39.9




Elastic and Yield base shear Coefficient Ce ,Cy
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Fig. 3 Elastic and yield base shear coefficient spectra



ANALYTICAL RESULTS AND DISCUSSION

Elastic Base Shear Coefficient

Upper five thin curves of Fig. 3 show the maximum elastic response of the base shear coefficient Ce.
Among five earthquake records in Table 1, the elastic base shear coefficient C'e becomes the largest in
the shorter period range (T < 0.3s) of Kushiro record, in the middle period range (0.3s < T < 1.7s)
of Kobe, and in the longer period range (1.7s < T') of Mexico-SCT. This does not explain the damage
of the site where each record was obtained.

In the case of the 1993 Kushiro-oki Earthquake, the damage was minor in general and the short period
structures (T < 0.3s) did not suffer any significant damage at the vicinity of the observatory where the
record was obtained. In the case of the 1995 Great Hanshin Earthquake, a large number of buildings
suffered extremely severe damage regardless of the height and more severe damage concentrated to
low and middle rise buildings (AIJ, 1995). The 1985 Mexico Earthquake caused severe structural
damage to buildings having six or more stories (UNAM, 1980). Therefore the elastic response spectra,
do not rationally explain the structural damage.

Yield Base Shear Coefficient

Lower five thick curves in Fig. 3 show the maximum yield base shear coefficient C'y that leads the
structure of infinite ductility to collapse. The yield base shear coefficient C'y of Kobe is the largest in
the shorter period range (T < 0.5s). In the longer period range (T > 0.5s), C'y of Mexico-SCT is the
largest. C'y of Kushiro is smaller than that of Kobe in short period range. Therefore, yield base shear
coefficient spectra explain the structural damage more rationally than elastic base shear spectra.

CONCLUSIONS

Elastic response base shear coefficient Ce does not coincide with the damage of structures. The yield
base shear coefficient Cy shows a good accordance with the damage extent of structures caused by
earthquakes. Therefore, Cy v.s. T, which is called as the yield base shear coefficient spectra, can be
used to evaluate the effect of earthquake motions to structures.
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