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ABSTRACT

Interaction between structures under seismic excitation are important to analyse especially for sensible con-
structions. The influence of an adjacent structure may increase or decrease the response of the dynamic
structural behaviour depending on the frequency content of the seismic-input-motion and the soil properties.
To predict the maximum dynamic amplitudes numerical investigations are required. The presented paper
describes a numerical procedure to analyse structures of arbitrary geometry on the surface of a layered soil
with constant stiffness and damping in each layer. The mixed boundary value problem is solved numerically
using influence-functions for the layered soil. The soil-structure interaction is realized by a discrete
weighted residual technique formulated in the frequency domain. Structures based on arbitrarily shaped
foundations at the soil-surface can be easily described.
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INTRODUCTION

The dynamic subsoil coupling of foundations is an important factor when considering dynamic soil-structure
interaction problems for foundation systems. A number of methods were introduced during the past decades
to solve this mixed boundary value problem in the frequency domain. Semi-analytical methods, cf. Savidis
and Richter (1977), Savidis and Sarfeld (1980), Wong and Luco (1986), numerical finite element and
boundary element techniques, Roesset and Gonzalez (1977), Mohammadi and Karabalis (1995), as well as
analytical methods, Triantafyllidis and Prange (1987) were used. While numerical techniques allow the



treatment of foundation systems of arbitrary geometry, analytical methods are restricted to regular geome-

tries.

Regarding the soil, as nonhomogeneous and layered, special influence functions are required to construct the
corresponding stiffness matrix. One of the possibilities is to use half-space influence functions in terms of
displacements for dynamic point loads determined by the thin-layer method developed by Waas (1972) and
Kausel (1981). Using this method and the substructure technique, cf. Wolf (1985), the interaction effects
between two structures with foundations of irregular geometry on a layered soil and excited by a seismic

wave are studied here.

SOIL-FOUNDATION SYSTEM

The system analyzed here is shown in Fig. 1. It consists of two structures based on rigid plate foundations
resting on a layered soil. Foundation A is a circular plate with a radius of r =20m. The superstructures are
modelled by lumped masses connected by rigid massless rods. The masses m and mass moments of inertia 8
are shown in Table 1. Foundation B is circumscribed by a rectangle of 32.6 mx 48 m. The side next to foun-
dation A has a curved edge. The distance between the two structures is Sm. The soil profile consists of three
layers overlying a half-space. The first layer, representing sand, has a thickness of hy =8m. The soil prop-
erties of the second layer with a thickness of hy =6m can be classified as marl. The third layer (dense sand)
has a thickness of h; = 15m. The soil properties of the underlying halfspace are those of gravel. The values
of the soil properties, i.e. density p, shear wave velocity vg, Poisson’s ratio v and damping ratio B are

given in Table 2.

Table 1. Mass distribution Table 2. Soil properties
Node m 0 z Layer p v, v B, Thickn.
No. [Mg] [Mgm?] [m] [Mg/m?]  [m/s ] [m]
9 35000 4.2x100 0.0 1 Sand 1.8 160 033 0.01 8.0
; 10 38000 4.6x106 100 2 Marl 2.0 220 045 0.02 6.0
g 11 20000 1.2x106 220 3 Sand 1.9 250 0.33 0.01 15.0
i 12 7000 0.8x10% 350 4 Sand 1.9 300 0.33 0.01 oo
/A 27 31000 6.5 x 106 0.0
g 28 34000 7.0x106 120
) 29 5000 25x10% 300

Both foundations are excited by a seismic base motion. As time input function a recorded accelerogram of
the earthquake of Friaul is chosen (Fig. 2).

ANALYSIS PROCEDURE

Egquation of motion

The formulation of the equation of motion in frequency domain is accomplished by using the substructure-
method, where the soil and the rigid plates are defined as substructures. To compute the dynamic repsonse



of the two structures with rigid foundations resting on a layered soil and subjected to horizontal seismic

excitation, the equation of motion is

M,ii, +D,u, +C u, =0 (1)

¢ [12]

Structure A

26]

Fig. 1. Perspective view and ground plan of the system

where M, represents the mass matrix of the rigid foundations, D, and C, describe the stiffness and damp-

ing matrix of the underlying layered soil. The vectors ii,, U, and u_ represent the absolute acceleration, the
relative velocity and displacement. Introducing the ground base motion u, and performing the Fourier

Transformation eq. (1) gives
[-o’Mm, +K,|U, -K,U, @)

where K represents the complex stiffness matrix of the soil considering the boundary conditions at the soil
surface for the rigid foundation. U, and Uy denote the complex amplitudes of the respective quantities in

the frequency domain Q.



Complex stiffness of soil

The contact area underneath the rigid plates is divided into a finite number of quadrilateral subareas A; with
uniformly distributed pressures q; = {qx,qy,qz} and weighted displacements u; = {ux,uy,uz}over each

subregion. The soil underneath foundation A is subdivided in 108 soil elements, for foundation B the subdi-
vision of soil comes to 160 elements. Introducing the influence matrix F yields u; = Fqk. Imposing a re-

laxed boundary condition at the contact area, the influence matrix F can be written F =If. Matrix I is the

identity matrix. The components of the vector f = {fxx,fyy,]_’u} are derived by integrating the surface influ-

ence functions f=1f,,, f,, fzz} as described below over the area A,. Assembling the influences f over all

soil elements leads to a frequency dependend flexibility matrix of the layered soil. Inversion of the flexibil-
ity matrix yields to the soil complex stiffness matrix K(iQ). The soil stiffness matrix K (i) which includes

the condition of the rigid body motions U, in eq. (1) is obtained by multiplying the matrix K with the trans-

formation matrix T and its transposed T*.
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Fig. 2. Time History, Fourier and response spectrum of Friaul eathquake



Influence functions

The surface influence functions f=1f.,f,,. fzz} for the case considered here are determined by using the

thin layer method by Kausel (1981). The method is a semi-analytical technique, in which the layered soil is
discretized in vertical direction by Lagrange polynoms and in horizontal direction described by analytical
functions. This formulation leads to algebraic expressions, whose integral transforms can readily be evalu-
ated. The frequency dependend influence functions for layered media due to dynamic unit loads are then
computed with high accuracy and reasonable computational effort. By using the thin layer method to com-
pute the influence functions, the finite layers of the above soil profile have to be divided into sublayers in
order to linearize the transcendental functions which govern the displacements in the direction of layering.
The thickness of the sublayers have to be small compared to the wavelengths involved. Here, the soil model
used consists of 116 sublayers.

RESULTS AND DISCUSSION

The system response due to a seismic excitation is computed for two cases. In case 1 only the response of
structure A is calculated, whereas in case 2 the complete system, i.e. both structures is analyzed. In all
graphs the results are denoted by dashed lines for case 1 and with solid lines for case 2.

Figure (3) shows the normalized horizontal acceleration on node 9 and 12 due to a unit horizontal harmonic
ground acceleration. At both graphs amplifications at the frequencies of f{ =1Hz and f;, =18 Hz can be
seen clearly. The amplification at frequency f| increases from the bottom (node 9) to the top (node 12) of
the superstructure. This indicates that the rocking eigenmode around the y-axis is located at this frequency.
The amplification at frequency f, can interpreted as a horizontal translation eigenmode combined with a

rocking mode. A significant effect of interaction appears only in the frequency range of 1.5 to 2.5 Hz.
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Fig. 3. Normalized horizontal acceleration for nodes 9 and 12

Figure (4) shows the vertical normalized accelerations on node 1 and 5 for the same unit horizontal ground
acceleration. Again the two dominant frequencies f; and f, can be identified. The interaction effects are



stronger on node 1, since this node is located next to the structure B. At node 5 the interaction effects are
less profound.

In Fig. (5) the reponse spectra for the horizontal acceleration for Node 9 and 12 are plotted. Since the domi-
nant frequencies of the input function are located in the range of 2 to 3 Hz and the eigenfrequency for the
horizontal translation mode is in the same range an amplification occurs in this range. The same effect can
be seen in the response spectra for the vertical accelerations in Fig. (6). In order to illustrate the interaction
influence between both structures the response curves for case 2 are divided by the respective curves for
case 1 by defining the parameters Y;, and Y, for the horizontal and vertical response. The variation of these

parameters with frequency is also shown in Fig. 5 and 6.
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Fig. 5. Response spectra and interaction influence factor of the horizontal acceleration for node 9 and 12
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Fig. 6. Response spectra and interaction influence factor of the vertical acceleration for node 1 and 5

CONCLUSIONS

The dynamic interaction of two adjacent structures supported by rigid foundations is presented for a hori-
zontal seismic excitation. The numerical procedure applied includes the complete dynamic subsoil coupling
and can be used to model arbitrary shaped foundation resting on layered soil. Acceleration response spectra
are given to demonstrate the influence of frequency in the dynamic soil coupling for the particular soil-
foundation system.
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