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ABSTRACT

A finite element for nonlinear analysis with more interface elements is formulated, and a M—¢ formulation
(MF-NONMIFE) as well with distributed nonlinearity that is introduced on a cross-section level taking into
account the interaction among bending moment and varying axial force. For that purpose for each interface
element are defined: (1) a family of trilinear moment-curvature relations for different levels of constant axial
load, which covers the range of expected variation of axial force within the element, and (2) the stress-strain
relation for concrete as well from which, depending on current level of deformation, the axial force
magnitude at each moment of time is determined. The verification of the model is demonstrated by
comparing the analytical and experimental results obtained from quasi-static tests of R/C columns within a
portal frame subjected to constant and variable axial force and reversed cyclic bending load. Since the model
is based on the moment-curvature relations the accuracy of the predict hysteretic response of reinforced
concrete structural section and reinforced concrete integral structures generally depend on the accuracy of
the characteristics which are used for definition of the input parameters for these relations.
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INTRODUCTION

During the past decade, various simplified models have been proposed simulating the hysteretic behaviour of
isolated reinforced concrete (R/C) elements, columns or beams. Introducing certain simplification and
corresponding assumptions, applicability of the models has been generally limited to the specificd cases. Most
of the proposed analytical models are developed based on specified force-displacement or moment-curvature
hysteretic relations, in which case the assumption of constant axial force during structural vibration has been
additionally introduced. However, the actual behaviour of R/C structural elements and complete frame
structure under strong seismic excitation is nonlinear, with dominant effect of interaction between the
bending moment and variable axial force, especially to exterior base-story columns, that are not taken into
account in the computation according to regulation in our country and the regulations of more countries
throughout the world. Therefore, the development of a mathematical model that will predict the nonlinear



behaviour of structures with consideration of different phenomena, is a subject to many investigations that
have been performed world wide for the last ten years (Bedell et al., 1983; Lai et al., 1984; Li et al., 1988;
Low et al., 1987, Ristic 1988).

For this purpose, the authors proposed a nonlinear multi-interface finite element model, M—¢@ formulation
(MF-NONMIFE), for prediction of hysteretic response of R/C members, which is able to simulate the
interaction. The parameters of the model were determined on the basis of materials properties, member
section geometry and expected variation of axial force of each element separately.

FORMULATION OF THE M—@ FINITE ELEMENT

The proposed formulation of the nonlinear multi-interface finite element represents a modification of the
originally developed stress-strain finite element, SS-NONMIFE (Ristic, 1988), that is incorporated in the
originally developed computer program NORA (Nonlinear Response Analysis Program). An approach,
using incremental numerical solution, is applied to the hysteretic response computation for R/C cross
sections, elements and structural systems, including variation of axial loads. The first and an important step in
the mathematical model is definition of the corresponding nonlinear stiffness matrix of the element for
presentation of its nonlinear behaviour under the effect of generalized loads. From this point of view, several
main assumption in the proposed model have been introduced.

Finite element proposed in the present study is defined by two nodal points connected by a straight line, each
of them having three global degrees of freedom-two translation and one rotation, Fig. 1.(a). In the local
coordinate system, the element is characterized by two rotation at the ends and an axial deformation
associated with two end moments and axial force, respectively. It is divided into a finite number of sub-
elements, Fig. 1.(b), which are defined between corresponding interface elements (IE), initially specified
along the structural member. The cross-sections (IE) are used to include the induced nonlinearity and their
extension along the length of the element depending on the previous loading history and the current axial

force level. Each of the interface element (IE) has two local degrees of freedom: axial deformation €, -
strain at the plastic centered of the cross-section, and ¢ s -interface element curvature, Fig. 1.(e).
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Fig. 1. Formulation of MF-NONMIFE Model; (a) Element; (b) Sub-Element; (c) Interface Element (IE);
(d) Cross Section; (€) Interface Element Force and Degrees of Freedom; (f) Strain Distribution



For each of IE, which are independent and generally different, are defined: (a) Stress-strain (c—¢)
relationship for the concrete in which all the characteristic parameters are included, Fig. 2.; and (b) Input set-

family of trilinear M—( relations for different axial force levels depending on the expected variation of axial
forces in the element, defined by previous analysis of the element cross-section, Fig. 3.

The base assumption in definition of the nonlinear stiffness matrix of the finite element is that the plane cross-
section remains plane after the deformations, which leads to the linear strain variation with the depth.
Nonlinear element tangent stiffness matrix is derived for each solution step by inversion of the current
element flexibility matrix. Assuming linear variation of flexibility along the length to the sub-element , the
element flexibility matrix can be assembled based on calculated contributions from each sub-element, along
the element length, by closed-form integration, taking into account current state of the corresponding
interface element flexibilities. The interface element current flexibility matrices are computed by inversion of
the previously calculated interfaces element stiffness matrices. According to this the location of the cross-
sections is selected that it enables a realistic presentation of the variation of flexibility along the element
during its hysteretic behaviour. In general, moment and curvature distributions are know a priori, which make
difficulties in the optimum spacing of the interface elements. In addition, because the element flexibility
distribution changes due to the loading, unloading, load reversals, as well as the moment-axial load
interaction, the spacing of larger number of interface elements along the member may be recommended. The
shape functions are not determined previously, but are obtained using the current matrixes that connect the
deformations of the IE and the displacements at the ends of the element, and they depend on the moment
state of the individual cross-sections and are modified in each step-solution. It is important to note that the
effects of shrinkage and yielding of concrete as well as shear deformations are neglected. The external loads
act on the nodal points of the elements, in the direction of the global degrees of freedom of each node.

The nonlinear 6—€ model for the concrete is presented by a polygonal envelope curve with 6 lows of loading
and unloading, Fig. 2. The unloading stiffness equals the initial stiffness, with an excluded positive part, not
allowing the occurrence of the tensile axial forces. This relationship enables definition of axial stiffness and

axial force level at each moment of time. For generalization of the procedure of simulation of M-
relationships, the complete Takeda’s trilinear hysteretic model was used (Takeda et al., 1970). Each curve of
these relationships is defined by eight parameters (6+2). The first six representing data on the curvature and
moment at the three characteristic points C, Y, U, and an additional two data defining the lower and the
upper limit of axial force for which the corresponding relationship is valid.
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The proposed algorithm for mathematical modeling enables definition of the axial force value at each step

of the solution, and hence selection of a corresponding M—¢ curve from the family of the relationships,
defining in this way the current bending stiffness of the element. The condition for a continuous variation of
axial load is sufficient enough to provide a continuous selection of the corresponding moment-curvature
relation.

The presented procedure for computation of the current element tangent stiffness matrix, depending on the
degree of involved nonlinearity, is based on the approximation that is constant during the discrete time
interval of integration and that change in stiffness due to the nonlinear behaviour of the elements is realized at
the transition from one interval into another. The relation between the tangential stiffness matrix and time-
dependent external forces is established by means of hysteretic model.

VERIFICATION OF THE PROPOSED MATHEMATICAL MODEL

In order to obtain necessary experimental results for actual hysteretic behaviour of R/C elements , a number
of quasi-static tests have been conducted, in which case R/C columns within a portal frame were subjected
to constant and variable axial force and to reversed cyclic lateral load (Oncevska, 1992, Oncevska et al. |
1994a, b).

A total of ten R/C specimens in scale 1:2 have been tested. Four elements were subjected to constant axial
forces, whereas six of them were tested under variable axial forces. The column cross section of a typical
model was designed to be 20/25 cm, 130 cm high. The distance between columns in the portal frame was
150 cm and they were connected with horizontal rigid beams of size 40/60/250 (270) cm at both ends. Two
types of models have been constructed each having five identical elements differing only in the total

reinforcement percentage as follows: i = 1.08% (6¢10mm) for columns of No.1-M1 model and p = 2.14%
(6614mm) for columns of No.2-M2 model. The transverse reinforcement is constructed with closed stirrups
(ties) ¢6mm placed at a distance of 7.5 cm, that is 5 cm close to the joints. Smooth reinforcement of
C240/360 (0,=240 MPa) was used. The designed crushing strength of the concrete was MB30 (30 MPa).

The performed specimens have been tested in a horizontal position. The experiment was conducted by con-
trolling the cyclic displacement after the constant axial force had been applied. The horizontal displacement
history was preliminary prescribed for each of the specimens, considering the expected response. The
amplitude of the exited displacement was increased in steps, after every 3 cycles, and the applied variable
axial load for the experimental test was considered to be proportional to the applied cyclic lateral load as
follows: Ny 3 (t) = N, + aF(t), where : & = 0tg - 0ty ; &3 = (Npin/max - No)Frax; Nmin and Ny are the
extreme values of the axial forces for corresponding variation DN(%) expressed as a percentage of the
gravity load Ng; o =0.72 and it is a coefficient which defines the relation between the axial forces and the
lateral cyclic force for tests in which constant axial force is applied; Fpax is @ sum of the ultimate values of
the horizontal forces for the two side rigid column loaded with constant axial forces Nyax/Nmin. Coefficient

o is taken different for each test which enables that prescribed axial force variation in columns (DN, Nmax

Nmin) is achieved when the ultimate strength of the model is reached. Using the collected experimental data
actual force-displacement hysteretic loops have been plotted for each of the 10 tested specimen separately.

Generally, the experimental results for the tested models show that the columns loaded with variable axial
force of higher intensity show larger initial secant stiffness and larger load carrying capacity. On the
contrary, in the region of post ultimate displacements, as it is the case in structures subjected to earthquake
effects, the degrading level of ultimate load carrying capacity is much larger in high compressive columns.
This points out the importance of taking into consideration the current level of the axial forces in nonlinear
response analysis of reinforced concrete structures subjected to earthquakes.



MATHEMATICAL MODEL AND ANALYTICAL RESULTS

The mathematical model of the tested specimens, Fig. 4., represents a nonlinear model with a local
nonlinearity, discretized by a total number of 5 two-dimensional linear finite elements. The horizontal rigid
beam on which the system for application of the horizontal cyclic bending force is installed and the rigid
zones at its connection with the columns, are discretized by linear finite elements (3 in total). The two
columns of the tested model are discretized by nonlinear MF-NONMIFE finite elements divided into 9 sub-
elements interconnected by a 10 interface elements in total, including also the cross-sections at the ends of

the element. Created for each interface element is a library matrix containing the input parameters of the 6—

¢ relationship for concrete (a total of 1 relation) and the family of trilinear idealized moment-curvature
relationships (19 in total) for a constant value of axial force Nj= No+ i-AN for i =1, 2, 3, ...n, (AN- increase
in axial force ). In this way, inclusion of expected range of variation of axial force in the structural element is
made possible. In this study, it is defined by the extreme values of axial forces Niin and Nmax . This means
that, for each interface element, at each time step of computation there exist 20 histeretic relationships or a
total number of 200 at the level of the finite element.

In the mathematical model, the loading conditions are simulated by two loading functions. They define the
history of the cyclically variable horizontal bending force ( load function 1) and axial force due to gravity
load with a certain number of input parameters ( in this case, most frequently 18 parameters) which define
its value and sign at the beginning and at the end of each of its time steps (DTF = 0.3 sec.). By combining of
these two loading functions, five loading cases are defined . They thoroughly simulate the original loading
state during experimental testing of each tested model taken separately.
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Fig. 4. Mathematical model of the tested portal frame

Presented further are the analytical results from the nonlinear analysis of the response of the portal frame
model SIM2E2 under variation of axial force for 80% of the gravity load N, = 360kN. Based on these, the
following can be generally noted:

(1) The proposed nonlinear analytical model, (MF-NONMIFE formulation) and the algorithm applied in the
numerical procedure quite successfully simulate the loading conditions in quasi-static tests of elements and



thoroughly provide the prescribed variation of axial forces in the frame columns, Fig. 5 (b), (c),
experimentally defined by the coefficient of the linear relationship between the cyclic load and the increase in

axial force;

(2) Due to variable axial forces in the columns, a nonuniform redistribution of internal shear forces takes
place, Fig. 6. (b). The proposed model performs this distribution very successfully, the more compressed
column sustaining a large percentage of the current level of horizontal loads than the less compressed one.
This conditions asymmetry of the analytically obtained hysteretic shear force-displacement relationships that
correlated quite well with the experimentally obtained envelope curves F-A at the left and the right column,

Fig. 7.(a), (b);

(3) The distribution of the analytically obtained moment at the critical cross-section of the fixed ends of the
left and the right column follows the distribution of theirs bearing capacity, Fig. 6. (c). Hence, it is provide
that it is directly dependent on the distance of the inflection point from the fixed ends and is proportional to
the intensity of the axial force. A higher level of axial force conditions a higher moment capacity of columns

but decreases the deformability capability of the cross-section for rotation.

The practical application and the possibilities provided by the proposed concept for analysis of dynamic
response of actual R/Cstructures are confirmed on the basis of the results on the linear and nonlinear
response of the mathematical model of a three-span six story R/C frame ( Oncevska, 1992)
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CONCLUSIONS

Considering the achieved satisfying level of agreement between the experimentally obtained envelope curves
and the corresponding analytical hysteretic relationships, it was concluded that the proposed MF-NONMIFE
finite element could be successfully applied for discretization and simulation of the nonlinear behaviour of
elements exposed to interactive effects of the bending moment and variable axial force during severe seismic
excitation. Since the model is based on the moment-curvature relations the accuracy of the predict hysteretic
response of reinforced concret: structural section and reinforced concrete integral structures generally

depend on the accuracy of the characteristics which are used for definition of the input parameters for this
relations.
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