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ABSTRACT

The reliability of a hysteretic structure under earthquake excitations is investigated theoretically. The ground
motion is modeled as a random pulse train with a broad-band evolutionary spectrum. Failure is considered
to have occurred, once the structural response exceeds a prescribed critical state. The total energy in the
structural system is approximated as a Markov process, and its governing equation is derived using a
modified version of quasi-conservative averaging procedure. The reliability of the system as a function of
time is obtained by using the numerical method of path-integration. Examples are given for illustration.
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INTRODUCTION

Under strong earthquake excitations, a structure is likely to become nonlinear and inelastic. The term
hysteresis is used to describe a type of inelastic behavior in which the restoring force depends not only on
the instantaneous deformation, but also the past history of the deformation. Consider an engineering structure
idealized as a single-degree-of-freedom system governed by

R+2tX +(1-0) X +aZ = E(2) ®
where Z is a hysteretic force, a is a constant between 0 and 1, representing the level of hysteresis, and §(2)

is the horizontal ground acceleration. Equation (1) is cast in a non-dimensional form. The effect of vertical
ground acceleration is neglected in the investigation, which is justified for most practical cases.

One widely used theoretical model for hysteretic forces has the form of

Z = -y |%|Z|z]" - BX|Z]" + AX @

where A, n, y and  are parameters. This type of model was proposed initially by Bouc (1967) and extended
by Wen (1976, 1980), and it has the following desirable properties: (i) the deformation-force relationship is



smooth, thus more amenable to analytical treatments, and (ii) the parameters in the model can be adjusted
to match a real hysteresis behavior.

It is reasonable to model the earthquake ground acceleration E(¢) as a non-stationary stochastic process. A
versatile model in which the nature of local geological features and seismic wave propagation can be
incorporated is that of a random pulse train, given by

N@)

E() =) Y h(r-) 3

i=1

where T is the random time at which the jth pulse arrives at a given site, Y; is the random magnitude of the
Jth pulse, N(¢) is a Poisson process, h(t—1:) is a deterministic pulse shape function which may be
determined from the knowledge of the physncal features of the ground. For different j, the magnitudes ¥;
are assumed to be independent, but have the same probability distribution as a random variable Y. It 1s
known that such a E(f) process possesses an evolutionary spectral density (Lin, 1986)

&(t,0) = _ZI;E[YZ] la(t,w) |? @

where E[ ] denotes a statistical average,

a(t,») = jh(u),/v(t-u e v dy ©)

and v(7) is the average arrival rate of the random pulses per unit time. We assume that a(#, w) is slowly
varying with time, so that the correlation function of £(f) may be obtained as

R(t,7) = B[E(H)E(t+D)] = f&)(:, w) e do (6)

We will be concerned with the total energy (also called the energy envelope) of the system, and the system
is considered to have failed if the energy envelope exceeds a prescribed safety level. The energy envelope
is expected to vary slowly with time; namely, its relaxation time is long. If this relaxation time is much
longer than the correlation time of the earthquake acceleration process, then the energy envelope may be
approx1mated as a Markov stochastic process. In the present paper, a modified version of quasi-conservative
averaging procedure is applied to derive a governing stochastic differential equation for such a Markov
Process. The reliability function of the system (one minus the probability of failure) as a function of time
is obtained by using the numerical procedure of path-integration. Numerical examples are given for
illustration.

MODIFIED QUASI-CONSERVATIVE AVERAGING

Traditionally, hysteresis behavior of a dynamical system is interpreted in terms of a cyclic motion. In this
case, the dissipated energy is represented by the well-known hysteresis loop. Fig. 1 shows several hysteresis
loops corresponding to cyclic motions of different amplitudes. It is, therefore, reasonable to separate the
hysteretic force Z in equation (1) into two parts as follows:

Z = h(X,X) +u(X) ™



Fig. 1. The Bouc-Wen hysteresis model.

where h(X,X) is an equivalent damping force, and u(X) is an equivalent spring force. One reasonable
choice for the equivalent spring force u(X) is the so-called "backbone", which passes the extremities of all
the hysteresis loops, as illustrated in Fig. 1. For a given set of parameters A, n, y and B, this equivalent
spring force can be obtained analytically or numerically from equation (2). The equivalent potential energy
and the energy envelope of the system are then

X
U = Z(1-a) X" + [ uy)dy, A=—X'+U@X) ®
We assume that (7) and (8) remain valid for non-cyclic motions.

Now letting

sgnXyU(X) = \/Kcos¢, O0<¢<2nm

©®)
X = -{2Asin¢
where sgnX is the sign of X, equation (1) may be replaced by
A = -4CAsin% +ay2Asing (A, ¢) - y2A sing E(F) (10)
¢ = -2Csing cosé + O [h(A,¢)cosg + LA ®) 1 _ 05 ¢y 1)
2A cos¢ VZA

where h(A,¢) and u(A,¢) are obtained from h(X,X) and u(X) by replacing X and X by A and ¢,
respectively, according to (8). We note in passing that the energy envelope would remain constant if the
excitation were periodic, and the system were performing a steady-state periodic motion.

In practice, the evolutionary spectral density of an earthquake excitation is expected to be of a similar order
of magnitude as the total system damping. Then the energy envelope A(?) is slowly varying with time. In
this case, the procedure of modified quasi-conservative averaging (Roberts, 1982; Cai, 1994) is applicable,
and the averaged A(f) is approximately a Markov process governed by an It stochastic differential equation



dA = m(A,D) dt +o(A,t)dB(¢) (12)

where m(A, 1) and o(A,t) are known as the drift and diffusion coefficients, respectively, and they are
obtained as follows

m(A,t) = (—4§Asin2¢ +ay2Asing h(A,$) ):

0

+ f(simb(t +T) sing(£) + cos¢ (¢ +71) cos¢(?) ) R(tx)dv (13)
o*(A, 1) = 2A I (sing (¢ +7) sing(s) ), R(¢,7) dv (14)

In (13) and (14) ( ), denotes a time averaging procedure, defined as
T
([']),=._;_![-]dt @1s)

in which T is the quasi-period corresponding to a total energy level A, obtained on the basis of a hypothetical
undamped free motion

X+(1-a)X+auX) =0 (16)

At a given energy level A,

T =47T,, = 4‘[ ! dx a7
V2A -2U(X)
where a is the amplitude corresponding to A, namely, a satisfies
U(a) = A (18)

Since sin¢ and cos¢ are functions of X and X according to transformation (9), they are periodic functions
with period T for a given A. As such, they can be expanded into Fourier series

sing () = }3 a sin[(2n-1)w, 1] (19)

n=l

cos¢ (t) = f: b cos[(2n-1)w,?] (20)

n=l

where @, =2x/T, and coefficients a, and b, are calculated from

T Ty
2 (.. . 2 5 .
a =2 [sing()sin[(2n-1)wt]dt = -——— | Xsin[(2n-1) o, t]dt (21)
T[ ! V2A T, 1[ !



b = _;_ ‘{ cos§(£) cos [(2n-1)w, f]dt = ‘!' VUX) cos[(2n-1)w, t]dt (22)

Substitution of (19) and (20) into (13) and (14) leads to

E (a}+b]) &[1,2n - w,] (23)

n=l

m(A,t) = J X*de-
1/4

0*(A,f) = 215Ai al ®[1,2n-1)w,] (24)

n=l

where A (A) is the area of the hysteresis loop corresponding to the energy level A. When carrying out the
integrations in (21), (22) and (23), X and X are obtained from equation (16) for the free motion. The
calculation may be performed numerically over one quarter of a period.

RELIABILITY ANALYSIS

The probabilistic evolution of the energy process A(#) is described by its probability density at time # on the
condition that its value at an earlier time # is known. This conditional probability density is called the
transition probability density, and is governed by the Fokker-Planck equation (e.g., Lin, 1967)

2= -2m00a1+ 52 [(h0a] @)
in which the unknown g is an abbreviation for g(A,z|\', '), where A is a possible value of A(?) and the
symbols A’ and # behind the vertical bar indicate the condition A(#) =A’. Since the evolutionary spectral
density of the random excitation &(#) is assumed to be slowly varying with time, the drift and diffusion
coefficients will not change appreciably in a short time interval. For a short time step Az = ¢ - ¢ and under
the condition

[g(h, t|N, 1)), ., = 8(A-A') (26)

the solution for (25) is approximately Gaussian. Specifically,

g(h [N, 7)) = 1 [A-A -m(N,¢) At}
20%(N, 1) At

exp {- } (27)

2n (N, ) At

If the initial probability density p(A,¢,) is known, then the probability density p(A.?) can be calculated
successively as follows, using the short time solution (27),

A‘
p(M1) = 1 g(ht |\, ¢) p(N,2) N (28)

In the step-by-step calculation, the probability density p(A,?) is obtained at discrete points, and its values
between these discrete points can be obtained by a suitable interpolation procedure.



We assume that the structure fails if its response displacement X(f) exceeds an allowable level a,, or
equivalently, the total energy A(?) exceeds the corresponding critical level A, where the two are related as
A, =U(a). The critical level A, is an absorbing boundary for the energy process in the sense that a sample
function is removed from the total population once it reaches A,. The above procedure is known as the path
integration (e.g., Wehner and Wolfer, 1983; Naess and Johnsen, 1993). The reliability of the system at time
t is the probability that the process A(f) remains below the critical level A,. This is obtained as

A

R(Y) = Ip()\., t) d\ (29)

NUMERICAL EXAMPLES

The application of the above analytical/numerical procedure will now be illustrated in some numerical
examples. For the earthquake excitation model (3), we select an average arrival rate for the random pulse
train

y(t) = t(l-cos_;‘.,_ot_), 0sts60 (30)
and a pulse shape function
h(t—v) = exp[-C o (t-1)]{ (_l;zi_c‘n sin[w ,(t-v)]+2L cos[w,(t-1)]}, >7 (31)
1-0)!

where W, =0, 1- C: , W, = 1 rad/s, and §,=0.3. It has been shown that the sample functions generated
from this earthquake model have the general appearance of the 1985 Mexico City earthquake records (Lin
and Yong, 1987). Fig. 2 depicts the evolutionary spectral density &(t,w) of the ground acceleration at
several different times. It is seen that the spectral density reaches its maximum at about ¢ = 35s.
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Fig. 2. Spectral densities of an evolutionary process at different times for E[Y?]=1.0.



Numerical results have been obtained for a structure described by equation (1) with damping ratio T = 0.1.
The parameters in equation (2) are takenas n = 1,A = 1 and B = y = 0.5. The critical amplitude is assumed
to be a_ = 3, and the reliability is calculated from (29), assuming that the structure is at rest initially, namely,
its initial energy level is zero. Fig. 3 depicts the computed reliability functions vs time for a structure of
strong hysteresis @ = 0.9. Several different values are assumed for the mean square magnitude of the
random pulse: E[Y?] = 0.003, 0.005, 0.01, 0.02 and 0.05. As expected, the structural reliability decreases
with an increase in the excitation level. Except for small excitation intensities (E{Y?] = 0.003 and 0.005
in Fig. 3), the survival probabilities are practically zero toward the end of the earthquake, as shown in Fig.
3. Fig. 4 depicts the calculated reliability functions for structures with different hysteresis levels: a = 0.1,
0.3, 0.6 and 0.9. The small differences in the results indicate that the hysteresis level is not an important
factor in these examples. A higher level hysteresis corresponds to a softer structure, as well as greater
energy dissipation. These two effects are opposite, and they nearly cancel each other in this case.
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Fig. 3. Reliability for different values of E[Y?] at a = 0.9.
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Fig. 4. Reliability for different values of a at E[Y?]=0.01.



CONCLUSION

Under the assumptions that the ground acceleration is a broad-band evolutionary process and that energy
dissipation in. a SDOF hysteretic structure is low, the response energy level in the structure may be
approximated as a Markov process. The reliability of the structure can then be investigated in terms of the
first-passage problem in the theory of stochastic process. By using a modified version of quasi-conservative
averaging, in conjunction with the numerical path-integration method, the reliability function can be obtained
numerically. The level of hysteresis is shown to be unimportant for the specific examples investigated in
the present paper.
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