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COMPENSATION OF TIME-DELAY IN SCALED-TIME PSEUDODYNAMIC TESTING
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ABSTRACT

One application of servo-controlled piston systems is in the field of structural dynamics. An area where such
systems are used is in pseudodynamic testing. The version of the pseudodynamic method presented in this
paper is run in a continuous manner. As in any control process a time delay is inevitable, but it introduces
errors in the imposed displacements which are said to undershoot, or phase-lag, the target displacements; as a
result the forces measured during the pseudodynamic test are not synchronised with the target displacements,
and therefore, are incorrect. This paper presents an analysis of the effect of these delays on the performance
of the pseudodynamic method.
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INTRODUCTION

Pseudodynamic testing over the past twenty years has evolved as a versatile testing method in structural
dynamics. The quality and quantity of tests has increased considerably and this is reflected in the number of
papers published on the subject. It is interesting to browse through the literature and discover that the key
concepts were laid down, and have remained unchanged, since the initial tentative tests were conducted
nearly twenty years ago. One particular example, and the subject of this paper, is the continuous, as opposed
to stepped, application of the target displacement (Takanashi et al, , 1986).

It must be remembered that, the pseudodynamic method is, in essence, a hybrid: a mathematical model in the
guise of an experiment. Research work on this subject has been divided into two broad areas: on the one hand
numerical integration problems; on the other, experimental implementation, in particular, control problems. A
major problem for the experimenters when performing the standard, step-wise, form was implementation
accuracy, for, as it was pointed out (Shing et al. 1991), the success of the experiment was often conditioned
by a phenomenon usually described as experimental error propagation. This type of error tends to introduce
unwanted damping terms in the form of a false hysteresis mechanism; when the imposed



displacement overshoots the target a positive damping term is created; when displacement undershoot occurs
it is negative, and hence, unstable; how unstable depends on the structure being tested, generally speaking: the
stiffer it is the worse things get.

Two other problems exist in the step-wise implementation, namely; stress relaxation and strain rate effects. To
overcome these aspects some researchers (Nakashima et al.1992) suggested trying out continuous
pseudodynamic testing.

CONTINUOUS PSEUDODYNAMIC TESTING

One of the first references to continuous testing, under displacement controlled form, is described (Kaneta et
al. 1983a, Kaneta gt al. 1983b ) as an analogue integration device which, through adjustment of the amplifier
gains, can regulate the time scale. Other formulations were proposed under force control (Thewalt et al.
1987) but whose implementation, up to now, has not been achieved. A real-time loading digital displacement-
controlled concept was developed (Nakashima et al, 1992), the goal being to test rate-sensitive materials.
However, it was pointed out that in order to do so, the real inertial mass was excluded during the test,
whereas the remaining structure was modelled with substructuring techniques. The subject of the stability
analysis was not specifically addressed, although perhaps this aspect would not become apparent given that
the element tested was a viscous energy-absorbing device. Recently, a continuous pseudodynamic formulation
which permits the selection of any desired time scale (Molina et al. 1994) but which can include the effects of
real inertial masses was shown to provide satisfactory results, however, it was pointed out that the procedure
is unstable for testing undamped elastic systems, unless some damping is introduced; the reason for the
instability was attributed to the negative damping associated to the phase-lag between imposed and target
displacements. The technique was found to be stable if the testing speed was slow enough to balance the
negative damping with the, small, but positive, damping produced by the internal (hysteretic) structural
damping.

INSTABILITY ANALYSIS

If it were possible to quantify accurately the amount of negative damping, and thereafter compensate it
precisely, on-line, then such a form of a continuous method would result in a much simpler implementation
and higher test speeds. It will be shown how, by correlating the structural vibration modes to the control
characteristics, the negative damping can be expressed as a form of proportional damping. First, the negative
damping will be described for the case of an elastic single-degree-of-freedom system (SDoF). Secondly, it will
be shown how this comes about during a continuous pseudodynamic test and how to compensate it. Through
modal decomposition, the analysis is extended to the case of multi-degree-of-freedom systems (MDoF).
Finally, for a generally non-linear pseudodynamic test, the correction is expressed as an extrapolation of the
delayed force history.

Apparent Hysteresis

When the load-deflection characteristics of an elastic spring are measured correctly, a linear relationship is
obtained, the slope of which is the stiffness k. If the measurement is carried out so that the measured force
corresponds to some prior imposed displacement an apparent, sometimes referred to as numerical, hysteresis
would result. The phenomenon may be considered as force and displacement vectors following a circular path
measured by @, but where the force measurement is lagging the displacement by the angle ¢. The sense of the
resultant force-displacement loops would run anti-clockwise: the spring would not appear to be conservative;



it would act as a source of energy. If this spring is fixed to a mass, m, and no energy-absorbing device is
attached to it then the system will become unstable. The rate of growth of the unbounded oscillations can be
expressed by a logarithmic increment term (Clough gt al, 1975) via a negative damping factor, { , as follows:

S/
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WhereW, is the work done per cycle and Se,,, is maximum strain energy reached during the same cycle. It

has been shown ( Den Hartog 1956) that the work done by a harmonically varying force upon a harmonic
motion of the same frequency, may be expressed in terms of the phase-lag, ¢, such that

W, = § F dbdo (33)
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where F =FSing and dd=38 Cos(¢—¢), and F, and §, are the amplitudes of the harmonic forces and
displacements respectively.

Given that Se_,, given is found for ds%q) =0, it can be shown that :

C=—tan(¢/2) )

where ¢ is expressed in radians. This procedure (Bousias gt al. 1995) was applied for real hysteretic
structural members. Equivalently, if the delay,t, between the force measurement and the imposed
displacement is expressed in seconds then, ¢, is simply:

¢ =m'T (6)
where @ = %n is the natural frequency of the spring-mass system.

Equation (6) can be applied directly to the familiar logarithmic decrement (in this case increment) equation for
a damped single-degree-of-freedom (SDoF) system so that the ratio R between two consecutive peaks for
small ¢ is given by:

R=e™" @)

It should be noticed that the instability is dependent on the square of the natural frequency.

Instability fi ical i ion pr ith ph

The following analysis is concerned with solving the linear second-order differential equation which models a
a linear spring-mass system using the pseudodynamic method.



mi+f =f, ®)

where m is the mass; f, the input force; f, = kx is the restoring force and k& and x are the spring stiffness
and displacement respectively.

The equation can solved by an approximate integration procedure which may be numerical or analogue.
However, for the purpose of this analysis, it will be solved using a discrete-time integration procedure,
namely; the central differences method.

The solution can now be expressed recursively in a discrete-time form as:
xn+l =2x" +(f:n —kx )Atz _xn—l (9)
m

where At is the time increment .

During a pseudodynamic test, the solution for the next target displacement, x™*, is obtained by measuring the

restoring force at a particular displacement at time nAt, and then substituting for it in (8) to obtain the
acceleration and using that in (9).

Between two integration time steps the load must be measured, the new displacement is evaluated and then
the pistons must reach that target displacement. Because this does not happen instantaneously, a time delay,

T, is incurred. Thus the measured restoring force introduced in (9) is not kx" but kx"'%” , this sets up the
energy-creating mechanism described above, and hence why the continuous form of the pseudodynamic
method is inherently unstable.

If the delay is assumed to be independent of the displacement amplitude then it would be sufficient to modify
(8) by including the damping ratio given by (6), hence the value of the damping coefficient, ¢, would be :

c=2-{mo (102)
or simply;
c=1-K (10b)

By including the positive damping term in (9) in equation (8) the imlanace due to the phase lag would be
cancelled:

mi+t-ki+f =f, (11)

Phase lag Correction for MDoF systems. For MDoF lumped-parameter systems the extension of (11) must be

a damping matrix which absorbs the equivalent energy which each vibration mode is receiving from the phase-
lag mechanism. The equation of motion, initially, is of the form:

MX +KX =F, (12)

It is recalled (Bathe 1982) that a proportional damping matrix C may be constructed such that



¥'C¥, =2-a,-§,-5; (13)

where §; is the Kroneker delta; ;,{;, '¥; are the i* natural frequencies, damping coefficients and mode
shapes respectively. Through orthonormality properties (13) simplifies to:

¥'C¥, =2 0, (14a)

also, for small @ values, the tangent term simplifies to {; = T’“’% then:

Y'C¥ =10} (14b)
also orthonormal rule gives;

¥Y'KY, = w? (15)
where K is the stiffness matrix, so we have;

C=1K (16)

Thus the correction for MDOF systems is nominally identical to (16).

; ; : 1es. An application of this compensation is
its apphcatlon as a pure numencal mtegratlon techmquc If thc time delay is purposely included so that the
equilibrium force used in (12) is that corresponding to the previous time step, then the original, discrete model
equation is transformed into:

MX, +K(X"—+‘§£)= F, 17)

which is simply arrived at by putting T= Az into (16) and substituting into (12). The central difference
operator can still be applied, for the expression is still explicit if the stiffness matrix is known at every time
step. Equation (17) can also be understood as an equivalent form of mass-penalty technique algorithms
(Macek et al.1995) which are nearly-explicit but more stable than the standard central difference operator.

MAGNITUDE AND NATURE OF PHASE-LAG

The phase lag does not originate from a single source, but is made up of two principal components. The,
usually, smaller one is the time needed to measure the force signal and perform the digital conversion and
numerical integration, which, for a SDoF system will be quite small. The other time delay arises from the
piston control loop; for as it was pointed out, a finite time must elapse between the moment when the new
target displacement is known and when it is applied. This will be heavily dependent on the type of structure
and pistons used for the test. Typically, it will be at least an order of magnitude greater than for the numerical
part, so that if the measurement, signal conditioning and computation time is of he order of 0.5 mSec then the
piston-controller system of a large-scale test will add on a further 50 mSec.



The qualitative behaviour of these delays is substantially different. Whereas the conditioning-computational
delay is nearly constant, the piston-controller delay is characterised by being non-linear. A typical delay-time

function for most structural servo-hydraulic systems looks like a step function. The low frequency band,
typically in the range 0.1 to 1Hz display delay times of a few milliseconds. As the frequency increases, the
delay jumps to a second level, usually one order of magnitude higher, but thereafter remains substantially
constant. The compensation for a SDoF system is trivial since all that is required is to obtain the delay time of
the scaled-down natural frequency of the structural element under test and apply the correction in (11).
However, for MDoF systems some of the scaled-down frequencies may lie in the low-band range, whereas it
would be necessary to use a time compensation corresponding to the highest (and most unstable) eigenvalues.
This implies that the lower modes may be over damped, while keeping the highest ones just stable. This
undoubtedly affects the accuracy of the integration algorithm which is no longer, nominally, second order
accurate. However, because pseudodynamic tests are performed on non-linear structures, the small over
damping term will be considerably smaller than the hysteretic damping associated to those smaller modes
where the error is greatest.

. ion of phase lag f od . ing of non-li
The concepts for phase-lag compensation apply as they stand to elastic systems or to non-linear ones if the
stiffness matrix is known, as may be the case for numerical integration using finite elements. During
pseudodynamic tests, the stiffness matrix is not known on-line so an approximation must be made. The most
simple one is to evaluate the real force by a first order extrapolation of the phase-lagging force measurement

thus the equilibrium restoring force at step n, f,", may be approximated by:
fr=p g =(u-)- £ (18)

where ”=yAt is simply the ratio of the delay time to the force-sampling period. Higher order

approximations are under review which, produce optimised damping function, that is, low damping
compensation for the low frequency range but more powerful at the highest structural frequencies. This
should result in near second order accuracy in the low modes whereas the higher modes may be kept under
control or substantially attenuated.

CONCLUSION

A methodology for the analysis, in the elastic regime, of the energy-producing mechanisms which can affect
the performance of continuous, scaled-time pseudodynamic has been presented. It has been shown how the
phase-lag between the target and imposed displacements results in a negative damping phenomenon which
can be compensated by including an exact but opposite damping term. The concept has been extended to
non-linear cases in the sense that the stiffness terms are unknown, by adopting extrapolation techniques on the
delayed force measurement.
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