o Copyright © 1996 Elsevier Science Ltd
o g Paper No. 788. (quote when citing this article)
‘ Eleventh World Conference on Earthquake Engineering
11 WCEE ISBN: 0 08 042822 3

ACTIVE CONTROL OF SEISMIC RESPONSE
BY VARIATION OF STRUCTURAL PARAMETERS

E. E. MATHEU

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, U.S.A.

ABSTRACT

The application of semi-active control for response reduction of seismic-excited civil structures is in-
vestigated. Semi-active control systems are based on the regulation of structural characteristics such
as damping and stiffness, which can be done with minimal power expenditure. The application of this
control strategy is demonstrated on a 10-story shear building with a controller developed by the sliding
mode control approach. Numerical results show that active bracings, combined with passive dampers,
can be effectively used to provide response reduction with minimal power requirement.
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INTRODUCTION

Seismic response control is a continuously growing field, strengthened by the development of new
algorithms and actuation devices that are specifically adapted to civil engineering structures. The
implementation of control systems offers a very exciting solution to the problem of response reduction
due to seismic excitation. This is specially true if the control system is designed to be used in conjunction
with other proven techniques for seismic mitigation, such as base isolation and energy-absorbing devices.

In active control methods the shaping of the system response is obtained by the direct application of
corrective forces on the structural system. In general, the operation of these control systems is charac-
terized by very large power requirements (Singh et al., 1995). A convenient alternative is presented by
semi-active control methods, which are based on the active regulation of structural parameters (Kobori
etal., 1993; Yang et al., 1994a). In this case, the parametric changes are introduced by active dampers
and/or bracings which create reactive internal forces according to the selected algorithm. The power
requirements of semi-active control strategies are significantly smaller than those demanded by active
control schemes based on external counteracting forces.

In this paper we consider the application of semi-active control schemes to civil structures using a
control algorithm based on the sliding mode control approach (Itkis, 1976; Utkin, 1971, 1992). These
type of controllers have shown remarkable robustness characteristics (DeCarlo et al., 1988) and they
have been applied to both linear and nonlinear systems with excellent results (Slotine, 1984; Yang
etal., 1993, 1994a, b). In the sequel we present a description of the sliding mode control approach
and its implementation with variable stiffness devices. Numerical results are presented to evaluate the
effectiveness of the proposed control strategy in the reduction of seismic response.



EQUATIONS OF MOTION

The equations of motion of an ng-degree-of-freedom building system with m, semi-active devices and
subjected to seismic excitation Z4(t) can be written as

Mz +[C+Cy]z + [K+Ky]z =—-Mri, (1)

in which the ny x 1 vector z designates the relative displacements and the n;y x ny matrices M, C and
K represent the mass, damping and stiffness matrices, respectively. The ny x 1 vector r denotes the
influence of the ground motion on each degree-of-freedom. The ns x ny matrices C, and K, represent
the contributions of the semi-active devices, characterized by parameters c,, and k,,, respectively.

It is convenient to obtain a representation of the system that uncouples the effect of the variable stiffness
and damping parameters on each degree-of-freedom. Let us define z = Ty d, where the n; X ny matrix
T4 is a transformation matrix which reduces the matrices C, and Ky to a special diagonal form. The
equations of motion can be written in terms of the coordinates d as follows:

Md+[C+G,] d+[K+K.) d =T Mri, (2)
where the transformed matrices are given by
- T ~ T ~ T ~ T ~ T
M=T,MTy ; C=TyCTq ; K=T;KTq; C,=Ty4C,Tq ; K. =T4K,Tq (3)

The matrices C,, and K, are n; xn diagonal matrices which show the m, coefficients c,, and k,,, respec-
tively, as the only nonzero entries along the diagonal. For a shear building model, this representation
can be obtained if the coordinates d correspond to the interstory drifts.

The equations of motion (2) can be written in terms of n = 2n; state equations as follows:
n=An + Bu + ei, (4)

where the state vector 1 and the excitation input vector e are defined, respectively, as
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and the state matrix A and the control input matrix B are given, respectively, as follows:
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with rank(B) = m.. The matrix L is a ny X m, location matrix which identifies the m, coordinates h
associated with semi-active actions, i.e. h = L7d. Using these variables, the control u is defined as

~ = h
w--[& &]{}} )
in which K= and CZ, are reduced size (m, x m,) matrices of the form Kt = diag(k,,) and Ct, = diag(c,,).

SLIDING MOTION

The main idea of the sliding mode control approach consists of forcing the system to move along a
pre-defined hyper surface in the state space, called the sliding surface. For simplicity, let us consider a
sliding surface defined by a set of m, linear equations of the form:

s(n)=Cn=0 (8)



with m, < m, and where C; is a m, X n matrix to be determined such that the sliding motion - that is,
the resulting motion when the system is confined to the sliding surface - shows desirable characteristics.

To obtain the set of equations describing this motion, first we seek a system representation characterized
by a special structure of the matrix B. Let us consider the singular value decomposition of B, given by

B=V;RV] 9

where V1 (n x n) and V3 (m. X m.) are orthogonal matrices. The n x m, matrix R is given by
b))
a2 o

where ¥ = diag(o;) with 0; > 0,1 = 1,2,...,m.. Using this factorization of the matrix B, we define
the following state transformation (Matheu et al., 1996):

n=Ty ; T=V,E; (11)
where E, is a n X n permutation matrix. Using (11), the state equations (4) can be written as
y=Ay + Bu + 8i, (12)

where _ _
A=T'AT ; B=T"'B; 6=T'e (13)

The transformed state equations (12) can be partitioned in the following form:

V1 A A Y1 B, & |..
. =\ 3z X + 1 & +9 - 14
{Y2} [An Azz}{)’z} [Bz]u {62}% (14)
where the state variables y have been separated into a set of n — m, variables, arranged in the vector

y1, and the remaining m, variables collected in the vector y;. It is easy to see that the partition B,
has the following structure, with a (m, — m;) x m, lower block By, which is not identically zero:

B;= [ 1'321, ] (15)

Let us assume now that the sliding surface (8) has been defined with respect to the variables y as
follows:

s(y)=Csy=0 (16)

where G, = | Cq1 | ] . Consider that the system reaches this surface at some time t; and it is forced
to stay there by some control action ii; that is, the system satisfies the following conditions:

s(y)=Csy=0 Vt>t, (17)
5(¥) lu=a = Cs 37 =0 Vt > tp, (18)

It can be shown that the control &t must be a solution to the following system of equations:
C:Bi=-C;Ay-C,ei, (19)

where the coefficient matrix C; B has dimension m, x m.. To obtain a unique solution for the control
action i1 we add m, — m, extra conditions of the form:

Biyi=0 (20)



It can be shown that the control i satisfying (19) and (20) is given by

. . 0 . 0 .
uz—Bll[CsA:Iy—Bll{ Csé}.’ﬂg (21)

where the m, x m, matrix B, is defined as follows:

B, =[ ;-32 ] (22)

Substituting (21) into (14) and taking condition (17) into account, we have that the behavior of the
system under sliding condition can be described by the following reduced order set of equations:

y1= [An — Az Csl] Y1+ @i, (23)

SLIDING SURFACE DESIGN

We consider here a method for sliding surface design based on the minimization of a performance index
of the form (Utkin and Young,1978):

h=[" (n"Qn)a 24
1= ), (n"Qn) (24)
where the matrix Q is symmetric and positive semi-definite. Considering (11), we can write

Jl = </0 (YT Qll YI + 2 y{ le Y2 + yg‘ Q22 y2) dt (25)

where the matrices Qq1, Q12 and Q22 are appropriate partitions of the matrix Q = TTQ T. Assuming
that the matrix Qg2 is positive-definite and neglecting the seismic excitation, the optimal solution is
given by y2 = —Cq1y1, where _ _

Ca=Qx [Afz P+ sz] (26)

in which the matrix P is the solution of the algebraic Ricatti equation:

— - - — - 1T = - — — - — - — . —

P [A1 + Ac] + [A1 + Ac] P+PA;;Qp AL P =-Qu1 +Q12Q5Q7; (27)
where A, = AnQ;;} Q{z Finally, the matrix Cs is obtained as follows:

C,=C,T'=[Cy ILn, | T (28)

CONTROLLER DESIGN

Having established the sliding surface, it is necessary now to define the control actions required to force
the system state to reach this surface, and then maintain it there. In the case of semi-active control,
we note that the control actions cannot achieve any arbitrary value. They are constrained by the fact
that the semi-active devices can only provide non-negative stiffness and damping values k,, and c,,.

Ideally we would like the system to stay on the sliding surface. However, because of the limited control
action available in the semi-active case, s(77) may not be equal to zero. This nonzero value is the extent
of separation of the system from the desired sliding surface. The distance from s = 0 can be represented
by the following function
[
- = 29
5s"s (29)

The objective of the semi-active control is to minimize the value of this function, in order to reduce
any tendency of the system state moving away from s = 0. That is, the control actions should be such



that they make the time rate of change of the function (29) as small as possible, preferably less than
zero. Considering Eqs. (4) and (8), we can write

d

i\ =sTC, {An+e¥%;}+s"CsBu (30)

The last term of Eq. (30) can be expressed as

me

STCS Bu=- ;nv_:‘(ﬁzh,) k'vi - Z(ﬂzhz) Cy; (31)
i=1

=1

where the coefficient §; represent the i** component of the vector 8 = sTC,B. From this equation it
is immediately apparent that whenever the terms (f;h;) and (5;h;) are negative, we should adopt the
smallest values for the corresponding coefficients k,, and c,,, and whenever these terms are positive we
should choose the largest values of the coefficients. This can be achieved by the following control law,
assuming that each device can only provide two values of stiffness {0; £**} and damping {0; c}**}:

kn}ax C,,Ta'x .
b = =5 (L sgn(Bih) 5 o, = == (1+ sgn(Bih:)) (32)

NUMERICAL RESULTS

We will consider a 10-story shear building model for the numerical simulations. Each story has the
same mass, stiffness and damping parameters. The mechanical properties and the frequencies of this
model are given in Figure 1. The resulting proportional damping matrix for the structure provided
a modal damping ratio of 3.1% of the critical in the fundamental mode. The m, semi-active devices
were modelled as variable stiffness mechanisms operating in a on/off regime as indicated by Eq. (32).
In addition to the variable stiffness characteristics, each device is assumed to have damping elements
which passively provide additional damping.

Two different cases were considered to investigate the effect of the number and position of the semi-
active devices on the performance of the controlled system. In the first model, it is assumed that there
are active bracings installed in the first four floors of the structure. The first two stories have devices
with a parameters {0.3k,f,0.25¢,¢¢}. The third and fourth stories have devices with parameters equal
to {0.2k,ef,0.15¢,5} and {0.1k..¢,0.1c,ef}, respectively. In the second model, we assume that there
are active bracings installed in all floors but the top one. The values of the stiffness and damping
parameters for the first seven stories are {0.3k,cs,0.25¢,.7}. The devices in the eighth and ninth stories
are characterized by {0.2k,.f,0.15¢,.¢} and {0.1k,f,0.1¢c.¢}, respectively. For both models considered,
the reference value ki is the story stiffness, that is 654.98 [MN/m]|, and the damping reference value
Cref 18 6.15 [MN.sec/m|. The numerical results have been obtained using El Centro ground acceleration
record, normalized to a maximum ground acceleration of 0.3g.

Figure 2 shows the time histories of the top floor displacements for the uncontrolled and semi-actively
controlled structure. Figure 2 (a) corresponds to the case m, = 4 and it shows that the maximum con-
trolled response is reduced to 85% with respect to the uncontrolled case. The reduction of the response
is more effective for the case m. = 9, shown by Figure 2 (b), in which the maximum displacement is
reduced to 64% of the uncontrolled peak value.

In Figure 3 we investigate the effectiveness of the control system in reducing the peak responses in
different stories. The response quantities are normalized with respect to the uncontrolled response and
they are shown for both cases m, =4 and m, = 9. The response of the controlled system is compared
with the response obtained by considering that the devices act passively. In Figure 3 (a) we observe
that additional stiffness can increase some response quantities and that the semi-active operation of
the bracings provides a reduction of the response with respect to the passive case. Figure 3 (b), which



corresponds to the case m, = 9, shows how the increased control authority generates more important
reductions of the response quantities for most of the floors.

The reduction of the response of the semi-actively controlled system with respect to that with passive
additional bracings is due to the dissipation of energy associated with the active regulation of the
stiffness parameters. This effect can be appreciated in Figure 4. The device force, normalized with
respect to the floor weight, is plotted versus the corresponding story drift for the semi-active device
installed in the first story. Figures 4 (a) and (b) correspond to cases m, = 4 and m, = 9, respectively,
and they show that the behavior of the device is characterized by the formation of hysteresis loops.

The effect of the device stiffness on the maximum responses is shown in Figure 5 for the case m, = 9.
Figures 5 (a) and (b) show normalized peak values of absolute acceleration and relative displacement for
two different stories, respectively. The peak responses corresponding to the passively stiffened structure
are also shown in these figures. Note that for zero device stiffness the reduction in the response is
caused by the additional damping introduced by the devices. Increasing the active stiffness has the
effect of improving the performance of the controlled structure. From the responses corresponding to
the passive stiffness case, we clearly observe that additional stiffness may or may not increase some
response quantities. This effect depends on the relative position of the resulting fundamental frequencies
with respect to the input motion response spectrum.

CONCLUDING REMARKS

In this paper, the performance of semi-active control approaches was numerically evaluated. A 10-
story building with mass and frequency characteristics similar to those found in practice was selected
as the example problem. Two different cases were considered to examine the influence of the number of
semi-active devices and their location on the resulting performance. The passive stiffening of a structure
may reduce or increase certain response quantities, but the active regulation of the additional stiffness
was found to be effective in reducing the structural responses.
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FIGURE 1: 10-STORY BUILDING MODEL USED FOR NUMERICAL SIMULATIONS.
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FIGURE 2: UNCONTROLLED AND CONTROLLED TOP FLOOR DISPLACEMENT.
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FIGURE 3: COMPARISON OF RESPONSE REDUCTIONS FOR PASSIVE AND SEMI-ACTIVE CONTROL.
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FIGURE 3 (Cont.): COMPARISON OF RESPONSE REDUCTIONS FOR PASSIVE AND SEMI-ACTIVE CONTROL.
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FIGURE 4: FORCE-DISPLACEMENT RELATION (SEMI-ACTIVE DEVICE: FLOOR No 1).
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FIGURE 5: EFFECT OF ADDITIONAL STIFFNESS ON BUILDING RESPONSES.



