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ABSTRACT

This paper presents a family of frame models based on the flexibility method of structural analysis. The
models are used for the nonlinear dynamic analysis of both reinforced concrete and steel frames. The
increased computational cost of the element state determination is compensated by the element robustness
that leads to the reduction of both total elements and degrees of freedom of the nonlinear frame analysis.
Two nonlinear moment-curvature relations and a fiber section model are presented. Computational aspects
related to the number of integration points and the section refinement are discussed. Finally, a consistent
method for the application of distributed loads is presented in which section axial force and bending
moments are always in equilibrium with both nodal and distributed loads.
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ELEMENT FORMULATION

Most frame elements implemented in present finite element codes are based on the classical stiffness method
of structural analysis. It is however recognized that such elements are inaccurate when strong ground
motions induce highly nonlinear responses in the structural members and fine meshes are needed to obtain
satisfactory results. In recent years there has been a growing interest in the development of frame elements
based on the flexibility method of structural analysis. The advantage of this method derives from the
assumption of the exact force distributions in the elements. The main challenge presented by this approach
lies in the element implementation in a general purpose finite element program, because the section resisting
forces are not readily related to the element resisting forces, as is the case of elements based on the stiffness
formulation.

The element formulation proposed herein can be derived using either a flexibility approach or a mixed
method. In the case of a beam element it is possible to show that the two formulations yield the same matrix
relation between element forces and element deformations. Because of its generality, the mixed approach is
followed. The beam element is shown in Figure 1. The element is represented in the local reference system
without rigid-body modes, thus element generalized forces and deformations (Q and g, respectively), are
measured with respect to the cord connecting the two end nodes.



Fig. 1. Beam element forces and deformations without
rigid body modes in local reference system.

Denoting with A increments of the corresponding quantities, the deformation and force fields (d(x) and D(x),
respectively) are written

Ad(x) = a(x) Agq

AD(x) = b(x) AQ 1

where matrices a(x) and b(x) denote the deformation and force interpolation functions, respectively. The
incremental section constitutive relation is written in the form
Ad(x) = f(x)AD(x) + r(x) (2)

where f(x) and r(x) are the section flexibility and residual deformations, respectively. The residual
deformations can be seen as the linear approximation to the deformation error made in the linearization of
the section force-deformation relation. Two integral equations are needed in the two-field mixed method.
One is the weighted integral form of Eq. (2):

L
J8D™(x) [Ad(x)- f(x) AD(x) - r(x)] dx = 0 3)
0

The other is the equilibrium equation of the beam element, which can be obtained from the virtual
displacement principle:

8" (x)[D(x)+AD(x)]dx = 34" @ @

@ eyt

Upon substitution of Eq. (1) in Egs. (3) and (4) and after rearrangement of the resulting expressions, the final
element matrix equation is

TT[F]' (T Aq-s) = Q-T"Q (5)

where

T = J.bT(x) a(x) dx (6)

F = [b7(x) f(x) b(x) dx ™



s = ij(x) r(x) dx (8)

T is a matrix that depends only on the interpolation functions, F is the element flexibility matrix and s is the
element residual deformation vector.

The selection of the interpolation functions b(x) and a(x) for the beam element greatly simplifies the above
expression. Matrix b(x) is computed from the assumption of constant axial force and linear bending
distributions within the element. Spacone et al. (1996) show that the selection of a(x) in the present
application of the mixed approach does not affect the element formulation because ¢ and Q are conjugate
resultants from a work viewpoint. This fact, peculiar to the proposed Bernoulli beam, leads to T=I, where I is
the 3x3 identity matrix, irrespective of the selection of a(x). Eq. (5) thus becomes

[FT' (Ag—s)= AQ ©9)

The element state determination is based on the element residual deformations (8). These deformations
cannot be applied at the element nodes because they violate node compatibility, thus end forces are applied
to the element to impose end deformations —s using the current tangent element stiffness matrix. These
forces change the element force field and yield new section deformations that cause new section residuals
r(x). The iterations continue until the element residual deformations become sufficiently small. During the
iterations the element force and deformation fields are adjusted until the section constitutive relations are
satisfied, while always satisfying equilibrium along the element. Details on the element formulation and state
determination can be found in Spacone et al. (1996). The element is presently implemented in the general
purpose finite element program FEAP developed by Professor R.L. Taylor at the University of California at
Berkeley and documented in Zienkiewicz and Taylor (1989 and 1991).

SECTION BEHAVIOR

The computation of the section resisting forces Dr(x) and flexibility matrix f(x) is an important step of the
element state determination. In the present version of the element, three different section models are
implemented (Figure 2): a section model based on the endochronic theory of plasticity, a piecewise linear
model and a model in which the section is subdivided into longitudinal fibers. The first two models assume
that axial and flexural responses are decoupled, while the fiber section naturally accounts for the interaction
between axial and flexural behaviors.

SECTION BEHAVIORS
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Fig. 2. Beam element integration points and section behavior.



The first section model to be implemented in the nonlinear element was the moment-curvature relation
derived from the endochronic theory. The endochronic model is based on the differential equation of a
simple viscoelastic model, modified by the introduction of an "intrinsic time" that yields a differential
moment-curvature relation dM/dy=g(x). Appropriate modification of g(x) permits the introduction of
pinching and damage in the section response. The application of the endochronic model to the study of a
reinforced concrete cantilever beam tested at the Earthquake Engineering Research Center of the University

of California at Berkeley is shown in Figure 3. Details on the element endochronic model are found in
Spacone et al. (1992).

Fig. 3. Analytical load-tip displacement relation of
specimen R-3 (test data from Ma et al., 1976).

The second hysteretic moment-curvature model is a piecewise linear law with a bilinear or trilinear envelope.
The model with the trilinear envelope is shown Figure 4 with a negative (softening) second slope in the
negative moment-curvature quadrant. Details on this model can be found in Filippou (1996).
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Fig. 4. Piecewise linear moment-curvature law.

In the third section model the element is subdivided into longitudinal fibers and the integral of the response
of the single fibers yields the section response. From the hypothesis that plane sections remain plane and
normal to the longitudinal axis the strain at point (y,z) of cross section x is &(x, y,z) =(y,z)d(x), where

1(y,2) is the simple geometric vector [ ( y, z) = {—y Z 1}. The strain distribution €(x,y,z) with the
constitutive relations of the constituent materials yields Young’s modulus E(x,y,z) and stress o(x,y,z). The



section stiffness matrix k(x) and the resisting forces D,(x) are then determined with the virtual force

principle. The evaluation of the integrals requires the selection of a numerical integration scheme. In the
present work the section x is subdivided into nfib(x) fibers and the midpoint integration rule is used for the
integrals. The resulting section stiffness and forces are

nfib(x)

k(x)= J-IT()’,Z) E(x, Y, Z) l(y,z) dA = 2 lT(x’yiﬁh’ziﬁb) (EA)iﬁb l(x’yiﬁh’ziﬁh) (10)
A(x) ifib=1
; nfib(x)
Dy(x)= ‘[l (v,2)o(x,y,z) dA = 2 lT(x, iﬁb,ziﬁb) (GA)iﬁb (an
A(x) ifib=1

The above integrals depend on the computation of the response of the single fibers. Presently, a library of
uniaxial constitutive laws is implemented and their modular implementation permits an easy interchange of
different model. Among others, the concrete uniaxial constitutive model proposed by Kent and Park (1971),
as extended later by Scott et al. (1982), and the steel model proposed by Menegotto and Pinto (1973), as
modified by Filippou et al. (1983), are implemented.

Because of the interaction between axial and flexural responses, the fiber section is a more precise model for
studying columns or, in general, members with high axial forces, such as those in prestressed concrete
structures. The fiber model is in general a more rational tool, while some feel that the other moment
curvature laws may save computational time. More details on the fiber model can be found in Spacone et al.
(1995a and b). The computational costs of different models and the robustness of the element iteration
scheme with respect to different section models will be addressed in future studies.

COMPUTATIONAL ISSUES

Several computational issues are involved in the implementation and performance of the proposed element
and a thorough discussion of all these issues is beyond the scope of this article. A general overview is given
in Spacone (1994) and further studies are needed. In this section, two of the main issues involved in the
response of the element with fiber sections are discussed; a) the element sensitivity to the number of section
fibers and b) the element sensitivity to the number of integration points.

A 55.78 ft high reinforced concrete bridge column with a 36 in. diameter circular cross section is used to
illustrate the problem. Imposed displacement cycles are applied at the free end of the column. In the first
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Fig.5.  Response of a cantilever beam with circular cross section:
a) with three different section mesh refinements;
b) with different numbers of integration points.



analysis, illustrated in Figure 5a, the response of the column is studied for three different mesh refinements
(twelve, forty and eighty-four fibers). The darker fibers in the section mesh indicate confined concrete. A
constant 1000 kips compressive axial force was applied and the analysis was conducted modeling the column
with a single beam element with four Gauss-Lobatto integration points. The section with twelve fibers does
not yield good results and underestimates the column bending capacity, while the more refined meshes
converge to the correct response. The same analysis was then repeated with the eighty-four fiber section to
test the response sensitivity to the number of integration points. The corresponding results are presented in
Figure 5b and they show that the response converges for more than three integration points. The column
stiffness is underestimated with two and three integration points.

The selection of the appropriate section mesh and of the optimal number of integration points should be
dictated by the optimization of both numerical efficiency and computational time. Computational times for
the analysis of Figure 5 are illustrated in Figure 6 and seem to increase linearly both with the number of
integration points and the number of fibers per section. From this study and from other analyses it was
observed that selecting less than four integration points and adopting a very coarse fiber mesh do not yield
satisfactory result. At the same time, section meshes with too many fibers and elements with too many
integration points (more than five) do not improve the response accuracy but stretch the computational time
considerably. Furthermore, it has been observed that if the section response starts softening, as is the case in
reinforced concrete columns with high axial forces and large lateral sways, increasing the number of
integration points leads to a strain localization in the end sections and to unrealistic strain predictions. This is
a well known phenomenon that occurs in the analysis of strain-softening materials.
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Fig. 6. Comparison of computational time for different section mesh
refinements and for different numbers of integration points.

DISTRIBUTED LOADS

One of the most interesting and promising aspects of the flexibility approach is the application of distributed
loads. Since the basic element is formulated without rigid body modes (Figure 1), thus reducing it to a simply
supported beam, the internal forces due to any distributed load are found from simple equilibrium conditions.
Calling AW the element incremental load vector and b, (x) the matrix relating section forces and element

loads, the internal force distribution is computed using

AD(x)=b(x) AQ + b, (x) AW (12)

instead of the second equation in (1). While the element formulation does not change, the element state
determination is affected by the distributed loads. In the element nonlinear algorithm the so called fixed-end
forces are computed. If the discussion is limited to the case of a uniformly distributed load and the element

T
loads are grouped in a vector consisting of the loads per unit length W = [Wx w wz] , the force

y

transformation matrix b,(x) in (12) is easily computed from equilibrium:



b(x)=| 0 0 gx(L—x) (13)

Different versions of the implementation of element loads have been proposed. The following procedure has
been recently suggested and is presented here because of its clarity. In the general case, at Newton-Raphson
step i element forces and stiffness matrix must be found corresponding to the new deformation increments
Ag' and the new distributed load increment AD; (x)=b_(x)AW/. This implies that in the first element

iteration j=1 the element force increments are
AQ™' =K Aq' + AQ; (14)

where AQ; is the element force vector necessary to maintain the imposed nodal deformations Ag’‘. The
incremental vector AQ; can also be seen as the element fixed end forces due to the distributed load

increment Ang . This implies that the section deformation increments in the first iteration are
A(x)™ = 7= [b(x)(KO Ag' +AQ ) +b,(x) AW;‘] (15)

The expression for AQ; is found using the principle of virtual forces to enforce element compatibility. The
results is :

S R

The application of element loads has a wide range of applications, from considering dead and live loads in
structural design to considering the effect of tendons in prestressed concrete elements or to the study of any
composite member in which bond effects between different material components affects the structural
response. These topics are the focus of ongoing research.

CONCLUSIONS

This paper presents a flexibility approach to the formulation of frame elements. The formulation is based on
the assumption of the exact internal force distributions for both nodal and element loads. The element
presents three major advantages over classical stiffness-based elements: a) the assumption of the exact force
distribution leads to a very stable numerical response of the elements; b) because of the numerical accuracy
of the element, only one finite element per frame member is used, thus introducing a significant decrease in
the global number of degrees of freedom; c) distributed loads are treated in an exact way, by introducing the
corresponding internal force distributions in the force interpolation functions. The approach has been applied
to the formulation of a new family of finite elements for the nonlinear static and dynamic analysis of RC and
steel buildings and bridges. Any nonlinear section constitutive law can be implemented in the element.
Among those presently implemented, the fiber section, which is based on the section subdivision into
longitudinal fibers, is the best solution if one wishes to consider the interaction between axial load and
bending moments.
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