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ABSTRACT

The paper deals with a comparison of the commonly used hysteretic model of friction forces with the recently
proposed velocity model. The numerical results are verified with experimental data in order to ascertain
how adequately these two methods describe the dynamic behaviour of systems with friction devices.
When employing hysteretic model of friction force, "oscillations" of relative velocity difference can appear at
times when the sliding ceases. Introduction of a correctness condition is proposed to avoid this numerical
inaccuracy. Similar and well coinciding with experimental data results are calculated by hysteretic and
velocity models, when dealing with correct solutions. The velocity model, because of its simplicity,
could be proposed for further development and implementation.
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INTRODUCTION

The main concept of incorporating energy absorbing devices in a structure is to concentrate the absorption of
seismic input energy in devices designed especially for this purpose, thus avoiding or minimizing inelastic
response of the main bearing elements of the structure. In this connection the use of friction devices for
construction and retrofitting of buildings has attracted considerable attention in the last decade, as reviewed
by Dowdell and Cherry, 1995, Dimova, Kritzig and Meskouris, 1995. The recent achievements in this area
deal with a simplified yet reliable procedure for seismic design of damped steel braced frames (Vulcano, 1995),
evaluation the feasibility of using the transfer function approach to establish the optimum slip load of friction
damped structure (Dowdell and Cherry, 1995), determination of the shape of the hysteresis loops and the
magnitude and distribution of contact pressure of two friction devices (Dorka, 1995), experimental testing of
slotted bolted connections (Grigorian and Popov, 1994).

The study of the dynamic behaviour and the resulting correct estimate of the effectiveness of isolation
systems with friction devices under seismic excitations relies upon a numerical solution of pertinent
nonlinear differential equations. The nonlinear terms in these equations are connected with the Coulomb
representation of the friction forces, which employs a sign function. The paper deals with the problem of the
adequate numerical simulation of the dynamic behaviour of systems with friction devices.



The ad-hoc numerical methods for treatment of the friction forces, when studying the dynamic behaviour of
systems with friction elements, could be related to the following four groups:

(1) equivalent linearization methods, in which the friction force is substituted by a viscous
damping force with an appropriate damping coefficient. Following this concept , the linearity of the
problem is preserved and the solution process is completely standard. Despite the simplicity of the
solution, the friction force linearization leads to inaccuracies in the system response time history, since the
introduction of a viscous damping force instead of a friction force implies relatively large displacements
during the stick phase. Several methods for the determination of equivalent viscous coefficients were
discussed by Beucke and Kelly, 1985, Kelly and Beucke, 1983, Dimova and Georgiev, 1992.

(i) controlling the stick - sliding conditions in accordance with the Coulomb representation of
friction force. The approach is complicated in cases where many vibrating parts of the structure are
connected by friction devices, since many different phase transition conditions must be taken into
account. Also, regarding the numerical solution, Feldstein and Goodman, 1973, have proved that if any
algorithm of order bigger than 1 is applied to a differential equation with discontinuities, its order
of convergence collapses to 1 after only one discontinuity. In the case of base-isolated structures with
friction devices, Dimova and Georgiev, 1992, when dealing with the numerical solution, showed that the
transitions between sticking and sliding may be accompanied by a jump of structure displacement or by a jump
of ground acceleration (if the ground acceleration function is not preliminary assumed to be continuous), or
by high-frequency "oscillation" of the wvelocity near the points of zero velocity. Further, Dimova,
Meskouris and Kraetzig, 1995, proved that in case of friction devices, distributed in a high of the structure,
the direct implementation of this method leads to high frequency oscillation of the relative velocity
difference in the following two cases:

() immediately after the time instances when the relative velocity equals zero if the exact
time of the transition 'sticking - sliding' is not determined precisely;
(ij) during the sliding phase, if an inappropriate size of the integration step is chosen.

(iii) representation of the friction force - displacement relationship by an approximate rigid-perfectly-
plastic hysteretic model. This technique is very widespread. It is not complicated to introduce such a
relationship into existing structural models or to employ existing non-linear structural analysis programs.
Most important, some world-wide spread programs offer the possibility to investigate systems with friction
devices by employing an approximate rigid-perfectly-plastic hysteretic model of friction force (DRAIN-
2DX, as described by Allachabadi and Powell, 1988), or a modified viscoplasticity model (3D-BASIS,
represented by Nagarajaiach, Reinchorn and Constantinou , 1989, 1991).

(iiii) representation of the friction force - velocity relationship by an approximation of the Coulomb
model. Such approach is proposed by Dimova and Georgiev, 1992, for base-isolated structures and by
Dimova, Meskouris and Kritzig, 1995, for systems with friction devices distributed at different levels of the
structure. The introduction of this relationship into the mathematical models is not complicated, because it
involves only the damping matrix and the load vector. In the following, when dealing with the
approximate Coulomb representation of the friction force - velocity relationship, it will be referred to
as the "velocity model" and the technique based on the representation of the friction force - displacement
relationship by an approximate rigid-perfectly-plastic hysteresis will be denoted as the "hysteretic model".

DESCRIPTION OF EXPERIMENTAL FACILITY
AND MODELS FOR NUMERICAL SIMULATION

Experimental Facility

The experimental model was created in the Structural Testing Laboratory at the Civil Engineering
Department of the Ruhr-University Bochum in order to validate the proposed by Dimova, Meskouris and
Kritzig, 1995, numerical technique for dynamic analysis of structures with friction devices. The model
consists of two frictionally coupled masses connected to the free ends of round cantilever bars, as
shown in Fig. 1.
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Fig. 1. Scheme (measurements in cm) of the experimental model

Friction occurs between the two masses at their interface, which was roughened in order to increase the
friction force. In order to minimize energy dissipation in the contact area between the lower mass and the
shaking table, the lower mass is equipped with three special wheels with roller bearings, which roll on a
polished steel plate, rigidly connected to the shaking table. More details about the model construction,
instrumentation and experimental determination of the system parameters are given by Dimova, Meskouris
and Kraetzig , 1995. Further, the following denotations are accepted:

x( describes the shacking table horizontal motion with respect to a fixed coordinate system,

x; and xp are the displacements of the upper and of the lower steel blocks measured relative to the
shacking table;

P is the normal force acting on the friction interface;

F is the friction force.

4 is the friction coefficient under the assumption that the static ug and the sliding uy
friction coefficients are the same (ug = ug = u);

m} and m) are the masses of the upper and of the lower steel blocks, corrected with the half of the
masses of the corresponding supporting bars and with the masses of the accelerometers;

k; and k) are the lateral stiffnesses of the bars, supporting the upper and the lower steel blocks,
respectively;

The experimental model features the following characteristics: mj; = 6.301 kg, m) = 2.530 kg, k; = 1084
N/m, k) = 2895 N/m, u = 0.22. The natural period of the coupled system is I’ = 0.296 s. The viscous
damping coefficient was obtained from the records of free vibrations of the coupled system as & = 0.015. In
the following numerical simulations the viscous damping is accounted by introducing a Rayleigh
proportional damping matrix /C] = y [K], where [K] is the stiffness matrix, = TE&/x and T is the first
natural period of the coupled system. The dynamic testing of the steady-state response of the model
comprised records of absolute acceleration time histories of the steel blocks for harmonic excitations with
a shaking table displacement amplitude of ay 4 mm and frequencies in the range of 2 to 5 Hz, as shown in

Table 1., where by 4t, is marked the step of discretization.

Table 1. Characteristics of experimental excitations

test No freq. of amplitude of at,
excitation excitation

- Hz m s

1 2.104 0.003994 0.01
2 2.659 0.004008 0.008
3 3.102 0.004062 0.00667
4 4.104 0.004052 0.005
5 5.123 0.004112 0.004

The recorded absolute acceleration time histories showed that the two masses were in adherence during
tests No 1,2 and S while periodic transitions between sticking and sliding were observed during tests No 3
and 4.



Hysteretic Model

The relationship friction force - displacement is represented by an approximate rigid-perfectly-plastic
hysteresis, as shown in Fig. 2. Transition from sliding to sticking is considered when

x7-x2=0 ¢))
thus obtaining the extrema (¥ j - X 2Jmax and (x ; - X 2pin in the relative displacements difference x -
x5 . Since the exact fulfillment of @) is practically unattainable in the numerical applications, the condition
¢) is usually substituted by

/321-322/<81 2
where £; is a positive constant, chosen sufficiently small to describe properly the moment, when the
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Fig. 2. Hysteretic model

During the sticking phase the friction force is linearly proportional to the relative displacements
difference x; - x3 by a coefficient . Sliding occurs when friction force reaches the value [F fr /=P i The
transition from sticking to sliding is described by

[xp-x3/=f for the first sliding 3)
and

X1-X2=(X]-XYmae -2 for x j-x >0 @)

X1-X2=(071-XYmin+2f for x j-x 2<0

where f= P u/k will be denoted further as "sticking displacement".

The hysteretic model of the friction force implies the following mathematical description of the
experimental model

my xj+ Fpp+ kpxp= -mpXg ()
myXy - Fp+ kyxy = -mjyXg
where F. is described according to the rigid-perfectly-plastic hysteretic relationship friction force - relative

displacements difference (shown in Fig. 2) and the transitions between sticking and sliding are accounted
according to egs. (2), (3), (4).

Velocity Model

Velocity model was proposed in order to overcome the disadvantages of the method of controlling the stick -
sliding conditions in accordance with the Coulomb representation of friction force, as proved by Dimova,
Meskouris and Kritzig, 1995. The demonstrated oscillations of the relative velocity difference immediately
after the time instances when the relative velocity equals zero or during the sliding phase naturally call
for the necessity

(i) to introduce some appropriate approximation of the Coulomb model in order to provide a reliable



estimation of the times of transition between sticking and sliding;

(i) to control the relative velocity difference during the sliding phase when processing a numerical
simulation.
As a reponse to these requirements the relationship friction force - relative velocity difference during the
phase of adherence is considered to be linear over a small value band of the relative velocity difference as
follows:

Fg=cjr-%2) for [ j-%,/<¢ (6)

F f = P pisgn (%] - X3) for [x j-% 5/ 2¢ (7)

where ¢; =P p ¢! and ¢is a positive constant chosen sufficiently small in order to describe as better as
possible the sticking phase. This way, according to eq. (6), the friction interfaces are coupled during the
phases of adherence by forces which are proportional to the relative velocity difference. Assuming the
validity of the approximation eqs. (6) and (7), the difference of the relative velocity does not change sign
during a sliding phase ( for [x 1-%2 /2¢ ), therefore

sgn [X (1) - X(1)] = sgn [¥)(t - A -%p(t - A)] (8)

where At is the integration step. Solutions obtained under the assumption eq. (8) are considered to be correct
at any time instant ¢ during the sliding phase if the condition

B 1) -% 2(0] [% 1t - 4) -% 5t - A9)] > &2 (1-1/n) )

is satisfied. Herein, » > / is introduced to control the exactness of the solution when a transition between
sticking and sliding occurs. Generally, the condition (9) implies no changes of the relative velocity difference
sign during the sliding phase. Also, when a transition occurs, the absolute value of the relative velocity
difference should exceed the value (¢ - £/ n) . To conclude, utilizing the approximations (6), (7) and the
assumption eq. (8), the mathematical description of the experimental model is

mypXp(0) + eyt -xx(0] + kyxp®) =-myxpt) for /% j-%2/<e¢ (10)

mp %) - cifEyt) - ¥p(0)] + kpx(t) =-mpXp(t)

and
mpxXpt) + kpxjt) =-mypxot) - P usgnfiy(t- Ay - xa(t- 49] for [xj-x/>¢
maXa(t) + kpxp(t) = -myEg(t) + P psgnfiy(t- A -X(t- AY)] (11)

NUMERICAL RESULTS

The unconditionally stable Newmark method with two different integration time steps was employed for the
numerical integration. A time increment of Af j = Af, /n ; was used when no transitions between sticking
and sliding occurred. Here by A#, is marked the step of discretization of the record of the shacking table
motion. Whenever a transition occurred, a smaller step Af y = At j/ n 5 was introduced.

"Oscillations" of the Relative Velocity Difference in Case of Hysteretic Model

Initially, when dealing with the hysteretic model, values of f= 0.00001 m,e ; =0.001 m/s, n; =2, and
ny = 2 were assumed and base excitation according to test No 4 was considered. The resulting absolute
acceleration time histories differed significantly from the experimental recorded ones, as depicted in Fig. 3a
for the upper mass. This phenomenon can be explained by the large number of changes of the friction force
magnitude due to the change of the relative velocity difference sign in a frame of one integration step, as
depicted in Fig. 3b.
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Fig. 3b. Relative velocity difference time history

The change of the sign of the relative velocity difference contradicts the constant sign of the friction force,

preliminary accepted for the considered integration step, i.e. the obtained solution is not correct.
Starting the solution in the next integration step by use of incorrect initial conditions, another incorrect
solution is obtained and so on. A similar phenomenon was demonstrated by Dimova, Meskouris and
Kritzig, 1995, when dealing with the Coulomb model and with the velocity model, if the correctness
condition 1s not satisfied. In case of hysteretic model these "oscillations" appear when a phase transition
from sliding to sticking occurs. In order to avoid these disaccuracies of the hysteretic model, the
following correctness condition is imposed at every moment t during the sliding phase

[% 10 =% 2(0)] [% (- A) -% o(t-A)] > g1 2 (1-1/m) (12)

where At is the step of integration ( A¢ = Atj or At = At 3 ) and n > 1 has the same meaning as in (9). Thus,
the condition (12) implies no changes of the relative velocity difference sign in a frame of one integration
step during the sliding phase and allows to obtain the phase transition from sliding to sticking for an
absolute value of the relative velocity difference, exceeding (&7 - £ ;j/n ) . During the solution process
by the hysteretic model the validity of condition (12) should be checked and if (12) is not satisfied, one
should increase the value of ¢&; or decrease the value of the integration step 4t . The less the &; the higher
the accuracy in finding the right moment of transition between sliding and sticking, but the
computational losses increase (4¢ should be less) and vice versa.

For these same initial values of ¢; and f the correct solution satisfying (12) was obtained by introducing » =
10 and by decreasing the integration time step through choosing# ;= 20 and n ), = 50. The relative
velocity difference for this correct solution is shown in Fig. 3b. The resulting absolute acceleration time
histories show a very good coincidence with the experimental recorded ones, as demonstrated in Fig. 4a
for the upper mass and in Fig. 4b for the lower mass.



This good correlation between the experimental and calculated results shows that the numerical simulations
using the hysteretic model can describe adequately the dynamic behaviour of systems with friction devices,
when the correctness condition (12) is introduced. Therefore, the implementation of condition (12) should
be recommended for implementation in numerical studies by use of hysteretic model.
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Fig. 4b. Absolute acceleration time histories for the lower mass

Comparison of Hysteretic and Velocity Models

Correct solutions are computed by hysteretic model for ¢; = 0.001 m/s, f =0.00001 m and » = 10 and by
velocity model for & = 0.001 m/s and » = 10. The periodic transitions from sticking to sliding, recorded
during test No 4 are compared with computed response in Fig. 4a and Fig. 4b for the upper and the
lower mass, respectively. Both the solutions by hysteretic model and by velocity model coincide well with

experimental results. We thus conclude that the two considered models can describe adequately the dynamic
behaviour of system with friction devices.

The implementation of hysteretic model requires to chose a couple of parameters (g; and f ) to
approximate friction force with a given magnitude in contrast to velocity model, which employs only one
parameter ( &7 ). The considered velocity model employs a relatively simple approximation of the Coulomb



representation of the friction force - velocity relationship. The introduction of this relationship to the
mathematical model of the structure is not complicated, because it involves only the damping matrix and
the load vector. Furthermore, if experimental data of the relationship between the sliding friction coefficient
and the relative velocity for the special interfaces are available, the direct introduction of the relationship
between friction force and relative velocity allows a relatively easy consideration of this nonlinearity.

CONCLUDING REMARKS

1. "Oscillations" of relative velocity difference can appear at times when the sliding ceases, when
employing hysteretic model of friction force. To avoid this inaccuracy a correctness condition (12) should be
introduced and checked during the numerical simulations.

2. When dealing with correct solutions, similar and well coinciding with experimental data results
are calculated by hysteretic and velocity models. Thus the velocity model, because of its simplicity, could
be proposed for further development and implementation.
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