Paper No. 730. (quote when citing this article)
Eleventh World Conference on Earthquake Engineering
11 WCEE ISBN: 0 08 042822 3

X{ Copyright © 1996 Elsevier Science Ltd

SEISMIC RESPONSE OF ALLUVIAL VALLEYS
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ABSTRACT

A simple shape is used to approximate the irregular interface of alluvial valleys. An approximate
numerical method is proposed to carry out the parametric study in order to determine the range within
which there appears big difference between two-dimensional and one-dimensional wave motions, which is
defined as that there is heterogeneity of alluvial valleys. Formulation of the heterogeneity is carried out in
the determined ranges, and a heterogeneity index, which is defined as the response spectral ratio of two-
dimensional wave motion to one-dimensional wave motion, is proposed to consider the effect of
heterogeneity. The index is proposed to be directly encoded into the current seismic design code to consider
the effect of heterogeneity of alluvial valleys.
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INTRODUCTION

With the massive accumulation of seismic records and the development of numerical methods, the effect
of heterogeneous underground interface on seismic wave motion has become one of the major research
subjects in earthquake engineering. This effect has been observed repeatedly during the damage
investigation of past earthquakes. Whereas, this effect has been totally ignored in the current seismic design
code due to many reasons. One of the reasons has been that this effect is quite difficult to quantity, and
another has been that there does not exist a synthetic parameter which can be used to quantify this effect. In
order to quantify this effect, we first propose a simple numerical method to calculate the two-dimensional
wave motion inside an alluvial valley. Second, we propose an index, which is the response spectral ratio
two-dimensional wave motion to one-dimensional wave motion and defined as the heterogeneity index in
this study, to approximate the effect of heterogeneous effect of alluvial valleys. Third, a great amount of
parametrical study is carried out to quantify this index. Finally, a simple methodology is proposed to
encode this effect into the current seismic design code.



A SIMPLE ANALYTICAL METHOD

A large number of numerical methods have been proposed to calculate the seismic wave motions inside
alluvial valleys(Takenaka, 1993). The emphasis of almost all these methods has been on the accuracy of the
numerical results, while the speed and simplicity of the method, which are two important factors to be
considered in engineering, have been ignored, which result in the difficulty in massive amount of
calculation encountered in parametrical study. In order to carry out the massive amount of calculation, a
simple numerical method is proposed by the author (Wang, 1994) based on the improvement of an
analytical method proposed by Aki and Larner (1970). A brief description of the method can be
summarized as the following. The wave motion inside an alluvial valley is approximated as the summation
of harmonic waves with unknown amplitudes. A least square method is used to find out the unknown
amplitudes by matching the stress and displacement continuity conditions at the surface and interface
between layers. A transmitting boundary ( Liao and Wong, 1984) is applied at the boundary of the
numerical model of calculation, which eliminates the non-practical assumption made in the original method
by Aki and Larner, which is that the real space should be considered as an infinite repetition of the
numerical model for the calculation. The elimination of this assumption leads to the following
simplification of the numerical method. The number of unknown amplitudes is not restricted by the size of
the numerical model, neither by the frequency of the wave motion. Therefore, the number of unknown
amplitudes can be chosen so that a predetermined accuracy criterion (say, 1%) is met. A number of
comparisons of the numerical results by the proposed method with those by other numerical methods have
been finished to validate the efficiency of the proposed method, which verify that the number of unknown
amplitudes can be chosen between 20~30 even at high frequency domain (Wang, 1993, 1994). Numerical
comparisons have also demonstrated that the proposed method only takes about one fifth of the CPU time
by the original method.

HETEROGENEOUS AREA

Definition of Heterogeneous Area

For the simplicity of the analysis, we only take one layer and assume that the shape of an alluvial valley can
be generally depicted by Fig.1. Our first step is to determine the areas where there appears big difference
between the motions calculated by one-dimensional method ( 1-D motion ) and the two-dimensional
method proposed by the author (2-D motion). Even with a model like the one shown in Fig.1, the number
of parameters which could potentially influence the two-dimensional result is so big that it is impossible to
consider all the parameters. Whereas, the following parameters are genearlly considered much more
important than others, which should be considered in the study. They include 1) the relative depth of the
valley, H/R, where H is the depth of the valley, R is the half width of the valley, 2) the relative length of
the inclining portion, W /R, where W is the length of the left inclining portion, 3) impedance ratio of the
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lower layer, respectively, 4) relative distance from the center of the valley, X/R, where X is the distance
from the center of the valley. Based on the shape of alluvial valley in reality, we assume the ranges for the
above parameter to be as: 1) H/R: 0.01~0.50, 2) a. : 1/2~1/12, 3) W/R: 0.1~1.0. The range of X/R will be
constrained to the area where there appears big difference between 1-D and 2-D motion. This area is called
“ heterogeneous area” in this study.

, Where p is the density, c is the shear wave velocity, subscripts 1 and 2 are for upper and

valley, o =

In order to define the heterogeneous area, we set up three criteria: 1) the difference of area below transfer
function is above 10% in the frequency range of (0~5)f; (where f| is the 1-D predominant frequency at the
center of the valley), 2) the difference of predominant frequency for 1-D and 2-D motion is above 10%, 3)
difference of 1-D and 2-D transfer functions is above 15% at more than 50% of all the points where
transfer function is calculated. Based on the above criteria, we define that the area which satisfies all the
above three criteria is called heterogeneous area ( shown as area 1 in Fig.1 and 2-a) of Fig.2), area which
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satisfies none of the above criteria is shown as area 3 of Fig.1 and 2-c) of Fig. 2, which needs no further

study, area which satisfies one and/or two of the above three criteria is shown as area 2 of Fig.1 and 2-b) of
Fig. 2 where there is heterogeneity, but not as big as in area 1, which will not be considered in this study.
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Fig. 1 A model for soft alluvial valleys

There are cases where H/R is big enough so that all the valley become heterogeneous area, a phenomena
also observed by Bard and Bouchon (1985) in their study of the change of wave motion amplitude inside
sediment-filled valleys. We define this H/R as critical shape ratio for the valley, which is found to be only a
function of impedance ratio, depicted as ( Wang, 1984)
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Fig. 2 Transfer functions for a valley of H/R=0.1, W;/R=0.5, a=1/4

Determination of Heterogeneous Area

In order to determine the actual range of heterogeneous area, two terms need to be firstly defined. One is
the upper-limit of the heterogeneous area, which is the boundary of area 2 and 3 in Fig.1, expressed by
relative distance (Y/R), where Y is the distance from the end of the valley. This implicates that when Y/R
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is bigger than (Y/R)y, there is no heterogeneity. The other term is called lower-limit of the heterogeneous
area, which is the boundary of area 1 and area 2, expressed by (Y/R).. This implies that Y/R below (Y/R),
is the area we need to study. From a large number of numerical results as those shown in Fig.2, we can read
(Y/R)y and (Y/R)., which are plotted in Fig. 4 and 3, respectively. The horizontal axis is the relative depth
divided by critical shape ratio of the valley, because when H/R is over (H/R),,, all the valley becomes the
heterogeneous area. Empirical formula are found to fit the data shown in Fig. 4 and 3, which are
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HETEROGENEITY INDEX

Formulation of Heterogeneity Index

Heterogeneity index is defined, in this study, as the response spectral ratio of 2-D wave motion to 1-D
wave motion. A damping ratio of 5% is taken into account in the response spectrum calculation. The NS
component of the ground motion recorded at El Centro is used as the input ground motion ( further study
demonstrated that input ground motion has little effect on the heterogeneity index). In order to maintain the
generality of the result, the natural period is normalized by the predominant period of 1-D motion at the

center of the valley, which is shown as =T, p/ T;.p. The effect of the parameters on heterogeneity index
is summarized as following. 1) The index is almost proportional to the impedance ratio; 2) the effect of
H/R can be generally divided into 3 groups (H/R=0.01~0.05, 0.10~0.20, 0.25~0.30), within each group,
there seems to be little difference of the index caused by the change of H/R; 3) the effect of W/R can be
eliminated in the following way. At the point with same depth, the index does not change even when W /R
changes. Therefore, W /R is fixed to 0.5 in this study. Effect of other Wy /R values can be considered by
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changing the value of Y/R to match the depth at the point of consideration. Further explanation will be
given in the following section of this study.
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Fig. 5 Heterogeneity index

The H/R group of 0.01~0.05 is taken as an example to formulate the heterogeneity index. A typical result
of the calculated heterogeneity index is shown in Fig.5-a). A large amount of calculation shows that the
shape of the index does not change much even though the input parameters are changed. The shape can be
generally expressed by the one shown in Fig.5-b). The horizontal axis of Fig. 5 is the normalized natural
period ¢ and the vertical axis is the heterogeneity index, which is expressed as 7 in this study. Calculation
of the index demonstrates that even when all the parameters are changes, the only change in this shape is
the position of point P, and P,, while the position of P, and P, seldom changes, which is fixed at (0.2, 1.0)
and (1.5,1.0), respectively. The reason for this phenomenon is that at the range which is far from the
predominant period, the amplification of the valley becomes so small that the effect of heterogeneity can
not appear to be large. But in the period range which is near the predominant period, the amplification
becomes large, the effect of heterogeneity can appear as large as it could be. Therefore, the remaining
problem is how to define the two points, P, and P, . The coordinates of P, and P, are defined as
(;;,t_,-) (i = 1,2). Reading of f (i = 1,2) from the calculated heterogeneity index is shown in Fig. 6, which
shows no effect from other parameters, except Y/R. It is understood from this figure that t—i(i =12)

increases with the increase of Y/R, but the ratio of £,/¢, is almost a constant. An empirical approximate
formula for Fig. 6 can be expressed by

E:o.ss+o.31%; 5/ 1,=045 @

The estimated ¢, by the above equation is also shown by a bold dashed line in Fig.6.

Fig. 7 shows the reading of r, from the calculated heterogeneity index. Since there is little effect caused
by impedance ratio, we just take the average of all the values, which is shown in a bold solid line in Fig.7.

Fig. 8 is the result of 71 , which shows a big effect caused by changeing the impedance ratio. The

approximation of r, in Fig.8 can be expressed as



n=a+bo (5)

where a, b are the coefficients, which are functions of Y/R. Derivation of a,b from Fig.8 is shown in Fig.9.

zvengedr

y 2 I (R 1:6

0 0.1 0.2 0.3 0.4 0 0.15 0.30
Y/R Y/R
Fig. 6 Values of t; and t, Fig. 7 Values of r,
3.0 Y v 2.0 T T
......... ‘| 6 /’
=ss=- 1:5 P4 L5 b b\ mimomemem b |

Y/R Y/R

Fig. 8 Values of r; Fig. 9 Valuesof a, b forr;

To test the results by all these empirical formulas, a test case is selected, with o =1/3, Y/R = 0.175 and

0.250. From Egs.(4, 5) and Figs. 7, 9, we can get the values of (r;,#) (f =1,2), then the result of
heterogeneity index. On the other hand, direct calculation of the heterogeneity index can also be obtained.
All these results are plotted together in Fig. 10. From Fig. 10, we can conclude that the estimated
heterogeneity index and the directly calculated results match quite well, which implicates that the proposed
formula can be applied in the simplification of considering the heterogeneous effect of alluvial valleys.
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Fig. 10 Comparison of the heterogeneity index

Application of Heterogeneity Index

This section explains how to apply the proposed index in seismic design to consider the effect of
heterogeneous underground structure alluvial valleys without the complicate calculation of seismic wave
motions for the real alluvial valley. The steps are:

1) At the point of consideration, calculate impedance ratio a, H/R, (W;/R),, (Y/R),, where subscript 0
stands for the original value calculated from the underground structure.

2) Calculate (H/R)cr from Eq.(1) by using a obtained in step 1).

3) Determine the heterogeneous area by Eqgs.(2,3). If (Y/R), is within the heterogeneous area, the effect of
heterogeneity needs to be considered, otherwise, there is no need to consider the effect.

4) Calculate the 1-D predominant period which corresponds to the center of the valley, expressed as T;.p.

5) Calculate Y/R which corresponds to a model in which the depth of the valley equals to the depth at the
point of consideration, but W;/R=0.50. For example, if the values obstained in step 1) are (W /R), = 0.25,
(Y/R), = 0.10, at the same depth of a model with W;/R=0.50 will result in a value of Y/R which is

approximately 0.20.

6) Calculate (;—:,-,z_,-) (i=12) from Egs. (4,5) and Figs. 7, 9. Then a shape looks like Fig.5-b) will be

derived. We express this as R, p.

7) Multiple the horizontal axis of Fig. 5-b) by the value of T,.p, which results in a horizontal axis which is
the natural period. We express this multiplied value as R, p,.

With the value of R, p, the design load for seismic design can be derived, which considers the effect of
heterogeneity effect at the site of consideration. For example, if the coefficient C; of shear force for seismic
design is considered, the modified formula should be

Ci=Z.(Rr.R2—D).Ai.CO (6)
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where Z is the modifier which considers the effect of seismicity in different zones, R; is the site amplifier
before considering the effect of heterogeneity, A, is the distribution of C; along the height of the building,
C, is the standard shear force coefficient for seismic design. If we simply replace the original R, with
(R*R,.p), all the other calculation will remain the same as it is.

CONCLUSIONS

A simple model is used to approximate the shape of alluvial valleys. A thorough parametrical study by the
proposed method is carried out to define and determine the heterogeneous areas, to formulate the equations
for the proposed heterogeneity index. The application of the proposed heterogeneity index to the current
seismic design code is proposed to include the effect of the heterogeneous effect of the alluvial valleys.
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