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ABSTRACT

Novel methods based on finite elements to model the unbounded medium in a dynamic medium-
structure—interaction analysis are summarised. Applications in soil-structure interaction demonstrate

the high accuracy and efficiency.
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INTRODUCTION

In a seismic soil-structure-interaction analysis the structure of finite dimensions interacts dynamically
through the structure-soil interface with the soil of infinite dimensions, called the unbounded medium in
the following. A typical example of such a dynamic unbounded medium-structure-interaction analysis
is shown in Fig. 1. The structure which can include an adjacent irregular part of the medium can
exhibit nonlinear behaviour. The unbounded medium must remain linear. In contrast to the bounded
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Fig. 1. Problem definition of dynamic unbounded medium-structure-interaction analysis

structure, the unbounded medium cannot be modelled with finite elements without a special treatment.
Two procedures to model the unbounded medium exist. In the first, the substructure method, the



dynamic properties of the unbounded medium are represented rigorously by the interaction force-motion
relationship defined on the structure-medium interface, which is global in space and time

woy = [ M=t = 7)) {i(r)}dr W

[M(¢)] is the unit-impulse response matriz of the unbounded medium relating the accelerations {ii(r)}
to the interaction forces { B(t)}. In the second, the direct method, the medium adjacent to the structure-
medium interface is modelled with finite elements up to the artificial boundary, which acts as a trans-
mitting boundary, where an approximate boundary condition is introduced, which is local in space and
time.

Recently, novel concepts based on the finite-element method to model the unbounded medium for the
hyperbolic, parabolic and elliptic partial differential equations have been developed. They are described
in detail with emphasis on wave propagation in the time and frequency domains in the book by Wolf
and Song (1996). Applications to soil-structure-interaction analysis are summarised in this paper.

SIMILARITY-BASED FORMULATION

The boundary-element method is widely regarded as the most powerful procedure to model the un-
bounded medium in the substructure method of analysis. It requires a strong analytical and numerical
background which the engineer who is familiar with finite elements has to acquire. As an alternative
the similarity-based formulation using the finite-element method and standard matrix operations can
be applied to calculated [M°°(¢)] in (1) (Part I of Wolf and Song, 1996). To explain the concept, a
9-dimensional half-plane with a discretized structure-medium interface is addressed (Fig. 2a). A similar
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Fig. 2. Concept of similarity-based formulation

fictitious interface is constructed selecting the similarity centre O. The two similar interfaces are defined
by their characteristic lengths r; and r.. A relationship between the unit-impulse response matrices at
the two interfaces of the unbounded medium is derived using dimensional analysis. The region between
the two interfaces is discretized with finite elements (Fig. 2b). Standard finite-element assemblage yields

another relationship between the two unit-impulse response matrices. These two relationships permit
[M°°(t)] to be calculated.

Two implementations of the similarity-based formulation exist. The first, the forecasting method (Song
and Wolf, 1995), makes use of the time delay of the waves propagating from one location to another
separated by a few rows of finite elements (Fig. 2b), similar to weather and flood forecasting. Only
the standard banded symmetric system of equations of the finite-element mesh is solved for each time
step. No approximation in modelling the unbounded medium other than that of the finite-element
method is introduced. Therefore, the forecasting algorithm converges to the ezact solution in the finite-
element sense. The second, the consistent infinitesimal finite-element cell method (Song and Wolf,
1996), works in the derivation with only one row of finite elements whose width measured in the radial
direction is regarded as infinitesimal. After performing the limit of the width analytically, an equation
for [M*°(t)] is derived. In an actual calculation the discretization is limited to the structure-medium



interface (Fig. 3) leading to a reduction of the spatial dimension by one. The consistent infinitesimal
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Fig. 3. Finite-element discretization of Fig. 4. Strip foundation with rectangular cross
structure-medium interface in consistent in- section embedded in transversely isotropic
finitesimal finite-element cell method half-plane

finite-element cell method can be regarded as a boundary-element method based on finite elements. The
procedure is ezact in the radial direction and converges to the ezact solution in the finite-element sense
in the circumferential direclions.

The similarity-based formulation captures the radiation condition at infinity using finite elements. For
problems with a boundary extending from the structure-medium interface to infinity (such as a half-
space with a free surface), this formulation automatically incorporates this boundary condition in
contrast to the boundary-element method. Material inhomogeneities which satisfy similarity can also be
processed without any additional effort. The similarity-based formulation can also calculate problems
for which the fundamental solution (which is necessary in the boundary-element method) does not exist
in closed form. This is, for example, the case for certain anisotropic materials. Only conventional static-
stiffness and mass matrices of the finite elements are calculated, which does not involve singularities as
in the boundary-element method.

The consistent infinitesimal finite-element method is used to analyse several examples with results
available from other sources.

First, the vertical degree of freedom of a strip foundation with a rectangular cross section of width
2b and depth e (e = b) embedded in a transversely anisotropic half-plane is addressed (Fig. 4). The
four ratios of the material constants are specified in Wolf and Song (1996). 24 3-node line elements of
equal length are introduced in the discretization of the structure-medium interface. The unit-impulse
response matrix [M*(t)] of order 98 x 98 is determined. To be able to compare with the results
in the literature, a rigid interface is assumed. The vertical unit-impulse response coefficient M*(t)
is calculated which is then transformed into the frequency domain. The resulting dynamic-stiffness
coefficient non-dimensionalized by the shear modulus is decomposed into a spring coeflicient k(ao) and
damping coeflicient ¢(ap) (Fig. 5). The agreement with the boundary-element solution of Wang and
Rajapakse (1991) is good.

Second, as an example from actual practice, a railway tunnel intersecting a fault is addressed (Fig. 6a).
The fault (Zone C) exhibits isotropic behaviour. The two zones of unbounded rock on both sides of the
fault are modelled as transversely isotropic with a horizontal plane of isotropy. The material constants
are specified in Wolf and Song (1996). A plane strain condition is assumed. The railway loads P results
in concentrated forces as shown in Fig. 6a. The centre of similarity is selected on the middle line of the
fault. As similarity is not satisfied exactly, small deviations of the locations of the interfaces between
the fault and the rock occur (dashed lines in Fig. 6a). The surface is discretized with 31 isoparametric 3-
node line elements (Fig. 6b). The unit-impulse response matrix [M*(t)] of order 124 x 124 is calculated.
The displacements caused by a step function of the applied forces are determined step by step from (1).
The deformed tunnel wall at a large time corresponding to statics (relative to the centre of the track) is
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Fig. 5. Vertical dynamic-stiffness coefficient of rigid strip foundation embedded in half-plane
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Fig. 6. Tunnel in inhomogeneous transversely isotropic unbounded rock

plotted in Fig. 6b. The agreement with an extended-mesh solution is excellent. In passing, it is worth
mentioning that the consistent infinitesimal finite-element cell method can also be applied directly for
static problems (Wolf and Song, 1996).

Third, as a 3-dimensional problem a square prism of width 2b embedded with depth e (e = 2/3b)
in a half-space with Poisson’s ratio = 1/3 is addressed (Fig. 7a). The finite-element discretization
of the structure-medium interface is shown in Fig. 7b. The vertical dynamic-stiffness coefficient is
calculated from [M>(t)] as described in the first example. The non-dimensionalized spring and damping
coefficients (Fig. 8) agree well with the boundary-element solution of Dominguez (1993). In addition, the
transversely isotropic case with the material constants specified in Wolf and Song (1996) is addressed.
The non-dimensionalized horizontal and vertical unit-impulse response coefficients plotted in Fig. 9
hardly deviate from the results of an extended-mesh analysis.

DAMPING-SOLVENT EXTRACTION METHOD
The dynamic-stiffness matrix [S*°(w)] used in a frequency-domain analysis based on the substructure
method can be calculated efficiently using the damping-solvent extraction method (Song and Wolf, 1994;
Part II of Wolf and Song, 1996).

Its concept is best explained starting with a familiar process. To extract salt from the ground, water
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Fig. 7. One quarter of square prism embedded in inhomogeneous half-space
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Fig. 8. Vertical dynamic-stiffness coefficient of rigid prism embedded in isotropic half-space
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is injected into the ground. The salt dissolves in the water which is then pumped to the surface. After
evaporation of the water, the salt remains. To calculate the dynamic-stiffness matrix in the frequency
domain of the undamped unbounded medium, damping is used as a solvent. Three steps are involved
in the procedure.

In the first step, a finite region of the unbounded medium adjacent to the structure, a bounded medium,
is modelled with finite elements (Fig. 10), whereby damping which is not present in the actual medium
is introduced artificially as a solvent. Hysteretic material damping with the ratio ¢ is used. The
effect of this damping consists of reducing the amplitudes of the outgoing waves f propagating from the
structure-medium interface towards the outer boundary and after reflection, diminishing the amplitudes
of the reflected waves g, resulting in negligible amplitudes when reaching the structure-medium interface.
The damping acting as a solvent thus leads to the structure-medium interface’s motion depending only
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Fig. 10. Finite-element discretization of unbounded medium in first step of damping-solvent extraction
method

on the outgoing waves f. The dynamic-stiffness matrix of the artificially damped bounded medium
[S¢(w)] follows straightforwardly by eliminating all degrees of freedom which are not located on the
structure-medium interface.

In the second step, the dynamic-stiffness matrix of the artificially damped bounded medium determined
in the first step is assumed to be equal to the dynamic-stiffness matriz of the unbounded medium with
the same introduced artificial damping. (The same is also assumed to apply for their first derivatives
with respect to frequency).

In the third step, the influence of the introduced artificial damping, the solvent, on the dynamic-stiffness
matrix is extracted. This elimination of the damping solvent can be performed for each element of the
matrix independently from the others and for each frequency using a Taylor expansion

(57N = e (8 + (V78 - Bl )

1+2C

The computational effort is negligible.

The damping-solvent extraction method yields an accurate approximation of the dynamic-stiffness ma-
trix of an unbounded medium by analysing the adjacent bounded medium only, which exhibits the same
dynamic characteristics as the (bounded) structure.

As a stringent test of the damping-solvent extraction method, the out-of-plane (anti-plane) motion of
a semi-infinite layer of constant depth d and shear-wave velocity c,, which is a dispersive system with
a cutoff frequency, is analysed (Fig. 11). To calculate the dynamic-stiffness matrix corresponding to
a parabolic shape function with nodes 1 and 2, a finite region of length ! (I = 3d) is discretized with
finite elements and ¢ = 0.2 is selected. The dynamic-stiffiness coefficient normalised and decomposed
into k(ao) and c(ao) shown as a solid line in Fig. 12 agrees well with the exact solution specified in Wolf
and Song (1996). For the sake of comparison, the undamped finite region of the same length with the
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Fig. 11. Finite region of semi-infinite layer of constant depth
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well-known viscous dashpots at the outer boundary is also evaluated (Fig. 11). This corresponds to the
direct method of analysis based on the viscous dashpots serving as a transmitting boundary. As can be
seen from the corresponding dynamic-stifiness coefficient shown as a dotted line, large deviations exist.
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Fig. 12. Diagonal element of corner node of dynamic-stiffness matrix of semi-infinite layer

DOUBLY-ASYMPTOTIC MULTI-DIRECTIONAL TRANSMITTING BOUNDARY

The doubly-asymptotic multi-directional transmitting boundary (Wolf and Song, 1995; Part III of Wolf
and Song, 1996) for use in a time-domain analysis based on the direct method is illustrated. To
construct the doubly-asymptotic multi-directional transmitting boundary, the multi-directional outward
plane-wave boundary condition is formulated for the interaction forces (and not for the displacements),
whereby the contributions of the two limits covered rigorously by the doubly-asymptotic boundary are
subtracted beforehand. The resulting boundary condition is discretized with finite differences leading
to an explicit formulation, which is straightforwardly implemented in the finite-element method.

The doubly-asymptotic multi-directional transmitting boundary combines the advantages of the doubly-
asymptotic and multi-directional formulations. It is rigorous for the low-frequency limit and the high-
frequency limit in the wave-propagation direction perpendicular to the artificial boundary and at all the
preselected angles. Tt is highly accurate for plane waves at intermediate frequencies and at other angles.

The semi-infinite rod on an elastic foundation (Fig. 13), another dispersive system with a cutoff fre-
quency, is examined applying a rounded triangular displacement pulse uo(t) on the structure-medium
interface for various transmitting boundaries. The details are specified in Wolf and Song (1996). 10 fi-
nite elements are used up to the artificial boundary. The interaction force R(t) is calculated. The result
of the doubly-asymptotic multi-directional transmitting boundary shown as a solid line in Fig. 14 is
much closer to the extended mesh solution than those of the viscous dashpots and the multi-directional
formulation used as transmitting boundaries.
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As a two-dimensional example the in-plane motion of a semi-infinite wedge with an opening angle of
a = 30° shwon in Fig. 15a is addressed.

A horizontal displacement ug(t) varying linearly and zero vertical displacement are prescribed. The
finite-element mesh up to the artificial boundary is shown in Fig. 15b. The corresponding equivalent
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Fig. 15. Semi-infinite wedge with prescribed horizontal displacement

interaction force R(?) is calculated. The result of the doubly-asymptotic multi-directional transmitting
boundary hardly deviates from that of the extended mesh (Fig. 16a), in contrast to those of other
transmitting boundaries (Fig. 16b).
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Fig. 16. Interaction force of semi-infinite wedge
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