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ABSTRACT

During an earthquake, an earth dam may experience substantial permanent deformation, causing damage or
failure of the dam. Despite the significant developments in recent years, the estimation of the likelihood of
such seismically-induced deformations, and of the performance of an earth dam, during the period of its
functional life still remains a challenge. This paper presents a simple methodology for calculating the risk of
earthquake-induced permanent deformation of earth dams. The methodology is based on the premise that ,
for a given dam, with known geometry and material properties, a relationship can be established between
permanent deformation, D, , earthquake magnitude, M and distance to source of energy release, R. Using
this relationship and any conventional computer program for seismic hazard analysis (SHA), the annual
probability of D, exceeding a specified value d, can be calculated. The methodology developed, can provide
estimates of relative seismic risks that are useful in design and decision analysis of earth dams, and can avoid
compounding conservatism. Furthermore, the procedure can be used to identify the important parameters
and assumptions that influence the risk for seismic deformations of an earth dam. It can also provide rapid
assessment of risk for an inventory of dams in a certain geographic region. Such estimates of risk can help
prioritize the dams that would require complete risk analysis and/or program of rehabilitation. An example
earth dam is analyzed to illustrate the application of the described procedure.
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1. METHODOLOGY
In a conventional Seismic Hazard Analysis (SHA), the probability of exceeding a certain level of acceleration
at a site is calculated using knowledge of the seismicity of the region and an acceleration attenuation
relationship appropriate for that region. Such a relationship is typically of the form,

A=f(M,R) ¢y

or more specifically, log A=c;+cyM+cylogR +c3) 3]

where A is the peak ground acceleration, M is the earthquake magnitude, R is the distance of the earthquake
considered from the site and ¢, through c, are regional constants. The calculation of the number of events



causing acceleration ‘A’ to exceed a specified value ‘a’, A(A 2 a), is made using any of the computer
programs for SHA that are currently utilized in practice. The annual probability of acceleration ‘A’
exceeding ‘a’ is then calculated from

P[A>a]=1-e-*(A223) (3)

In an analogous manner to acceleration A, for a given dam, with known geometry and soil properties, if a
relationship can be established between permanent deformation, D;, and M and R such that

D, =f(M,R) @

then a conventional SHA computer program can also be used to calculate the annual number of earthquakes
that would cause D, to exceed a specified value d;. In such an analysis, the functional relationship of D, (Eq.

4) is read into computer program instead of an acceleration attenuation law (Eq. 2). Hence, from the SHA
the number of events causing permanent deformations D, to exceed a specified value d, , A(D, 2 d,), can be
calculated from

P[D,>d]=1-e-*Dr2dy (5)

2. MATHEMATICAL FORMULATION FOR D,

Yegian et al. (1991b) have demonstrated that the permanent deformation, D, , of an earth dam can be
estimated from the following expression

2
Dr = Dn Neq T Ka (6)

where D,, = Normalized permanent deformation = g(K,/K,)
Neq = Number of the equivalent uniform cycles
K, = Average acceleration of a critical sliding mass
K, = Yield acceleration of the critical sliding mass
T = Predominant period of the motion within the dam.

To develop a relationship for D, as a function of M and R, the following mathematical formulations are made
on the parameters involved in Eq. 6.

2.1 Normalized Permanent Deformation, D,

Using data from actual earthquake records, Yegian et al. (1991b) have established a mathematical function
g(K,/K,) that defines D,, . Expressing this function in terms of the natural log of D, yields,

_ Ky Ky Ky
In Dy = 0.5135 - 23.3(1-() + 37'72(K_a) - 26.43(f +S¢p,_ (7

a a

in which S is the standard normal variate and C’Dn is the standard deviation of In D, and is equal to 0.45.
2.2 Uniform Number of Equivalent Cycles, N¢q

Based on data from Seed et al. (1983), Number of uniform cycles, N
M, by the following equation

eq Can be related to Richter magnitude,

Ng = 0.16 c06 M) (])



2.3 Predominant Period, T

The parameter T in Eq. 6 represents the predominant period of the motion within a dam. Previous
investigators including Gazetas (1987), Takahashi et al. (1977) and Okamoto (1984) have shown that this
period over the height of an earth dam is almost constant; and, for a wedge shape geometry of dam, is close
to the first mode fundamental period of the dam (Ambraseys & Sarma 1967). Hence, in Eq. 6, T is
substituted by the fundamental period of the dam. For a homogeneous dam, considering a linear-elastic
response, this period can be approximated by the following expression (Ambraseys & Sarma 1967)

T =2.61 (H/Vy) )

where H is the height of the dam and Vj is the shear wave velocity of the dam material. Alternatively, T can

be calculated using dynamic response analysis of the dam. In such an analysis, nonlinear material behavior
under large strains can be incorporated using normalized modulus reduction curves. From dynamic response
analysis of typical earth dams, Ghahraman (1993) has demonstrated that, the calculated period, T, of a dam
can be expressed in general terms as

T=T,+ P pga/g (10)

where Ty, is the period of the dam at small strains (Eq. 9) where material nonlinearity is of little importance,

and [} is a parameter that introduces the effect of large acceleration, hence, material nonlinearity upon T, pga
is the peak ground acceleration at the base of the dam, and g is the acceleration of gravity.

2.4 Average Acceleration within a Dam, K,

According to Makdisi & Seed (1978), Ambraseys (1960) and Ambraseys & Sarma (1967) the acceleration of
any sliding mass within a dam is a function of the maximum acceleration at the crest of the dam, U,,,,, . Fora

case where the failure surface of a sliding mass passes through the base of the dam, Makdisi & Seed (1978)
suggest that
K,=035U,,, (11)

Also, Makdisi & Seed (1979) have shown that

. 2 2 2, 05

Upax = [(1.6S,;)” + (1.06S,,)" + (0.86S,5)] (12)
where S,;, S,, and S,; are the spectral accelerations corresponding to the fundamental period of the first

three modes of the motion of the dam. Considering the contribution of only the first mode to U K, can
be approximated by

max »

K, =0.56S,, (13)

S,1 can be related to pga and T through the average normalized spectral acceleration curves proposed by
Seed et al. (1974). For stiff soil conditions, and for a period range of most dams (i.e. 0.3 s < T, <1.55), the
curve is expressed by

S, =0.893 pga/T (14)
Substituting Eq. 14 into Eq. 13 results in

K, =0.50 pga/T (15)

The results from the dynamic response analysis of a typical dam (Ghahraman 1993) also confirms the



general form of the Eq. 15. Thus, in general K, can be expressed as
K, = o (pga/T) (16)

where o can either be estimated from dynamic response analysis or be approximated as o = 0.5. It is noted
that the effect of material nonlinearity on K, (Eq. 16) can be conveniently introduced through T (Eq. 10).

2.5 Yield Acceleration, Ky

In the analysis of permanent deformations, the yield acceleration, K,, plays a very important role. For a
selected sliding mass, the value of Ky is very much dependent on the shear strength of the dam material in
the region of the slide. If the dam material experiences loss of shear strength, then K, will consequently
decrease. Reduction in shear strength (i.e. reduction in Ky) can be attributed to larger values of K, and/or
larger number of cycles of motion, N, associated with larger earhquake magnitude. Again, the results from
the analysis of a typical dam (Ghahraman 1993) shows that K can be expressed as follows,

a a M
Ky=Ky -3 K, e > (17)

where Ky, is the yield acceleration considering no loss in shear strength, and a;, a, and a3 are parameters that

define the relative influence of larger accelerations and magnitudes (or Neg)-

2.6 Peak Ground Acceleration, pga

The peak ground acceleration is commonly related to earthquake magnitude M and distance R through an
attenuation relationship having typically the form,

Inpga=c; +c, M+ cyIn(R + ¢5) (18)

The uncertainty associated with this relationship is given by Oy, the standard deviation of In pga.

3. PERMANENT DEFORMATION, D,
Rewriting Eq. 6 in a natural logarithmic form results in
InD,=InD,+In N, +2InT+1nK, (19)

Substituting expression for In D, and K, (from Eqgs. 7 and 16, respectively) into Eq. 19 results

g

Glpga

2
BT ) L 3770 (—) - 2643

+In (px,) + In (Wpga) + In () + In 00 + s §p,

Uinp, = 0.5135-23.3 UK,HT

(20)

where “Ky = mean value of K, given by Eq. 17
Ur = mean value of T given by Eq. 10



IN,~ mean value of N, given by Eq. 8
Kpga= mean value of pga given by Eq. 18

Mg = mean value of S =0.

Using Taylor’s series expansion for the variances

2 2 2
InD InD
Var{lnD,] = 9 In Dr Var [K,] + d1n D, Var[T] + dln Dy Var [pga]
dK 0T dpga
y
2 2
InD d1ln D,
ML Var[Neg] +| 2| Var[s] 1)
9 Neg 0S
where
2 2 3
OInDr 33 T 47544 KT 9999 KT (22)
dK, 0 pga (o pga)? (o pga)’
K K2 T K,> T?
oD 533 Ky 47544 KT 9909 KT 1 (23)
dT o pga (o pga)? (apga’® T
K. T 2 T2 K.3 T3
dlnD: _ 35 Ky ~-75.44 Ky - +79.29 = T4 + 5k (24)
d pga o pga o pga o3 pga
dln Dr 1
Ny Nea )
dlnD
s -= {p, (26)
These expressions are evaluated at mean values of Ky, T, pga, Nog, and S.

It is noted that in the expression for D, (Eq. 20) the parameters on the right hand side are functions of M or

M and R. However, the expression is complicated and does not have the normal form of an attenuation
relationship needed for use in a conventional SHA computer program. Using regression analysis and the
expression for D, (Eq. 20), a more convenient relationship for D, as a function of M and R was established,

as is described in the following section.

4. ATTENUATION RELATIONSHIP FOR D,

For a given earth dam, Ky, and T, are known and depend on the geotechnical material properties. The rest
of the parameters defining D,, depend on M and R. The concept followed in here was to develop a
procedure that provides the constants of the equation for D, that has the attenuation relationship form

shown in Eq. 27.
InD;,=Bg+B; M+ B>In (R +25) (27)

For a given dam (Ky and Ty known) and for a selected values of M and R, In D, and G, _;, can be calculated
r

using Eq. 27. Thus, the constants in Eq. 27 can be obtained from a multi-variate regression analysis if an
array of D, versus M and R is generated. To accomplish this, a computer program “ARPED” was
developed in which M and R are varied from minimum to maximum values of interest based on the
knowledge of the local seismicity. Thus, values of D, and GlnDr are calculated for every pair of M and R



using Eqs. 20 and 21. Then, a subroutine in the program performs a regression analysis and computes the
values of the B parameters of the Eq. 27. The error of residuals from the regression analysis, O I8

combined with the GlnDr by

Otot?> = OR? + O1p p,2 (28)
5. RISK ANALYSIS FOR PERMANENT DEFORMATIONS

As described in Section 1 the number of earthquakes causing D, to exceed specified value d, can be obtained
using a conventional SHA program. In this approach the value of the B parameters of Eq. 27 are read in for

constants of attenuation relationship. The standard deviation, G,  , is also read into the computer program

replacing standard deviation of pga (or In pga).

It is noted that G, , calculated from the regression analysis is not constant but varies slightly with the value
of D,. Thus, G, , used in the SHA program should correspond to the typical range of D, determined by the

maximum and minimum values of M and R for the region. In the next section the sensitivity of the
calculated probabilities of exceeding D, to G, , is discussed.

6. ANALYSIS OF AN EXAMPLE DAM

To illustrate the details of the risk analysis procedures described in the preceding sections, an example dam
shown in Fig. 1 was analysed. The values of the parameters that define the relationship for the period T,
average acceleration K, and yield acceleration K, were obtained based on the results of the dynamic response

analysis of the dam, for various levels of pga, reported by Ghahraman (1993). The results are as follows,

1. T=T,+ B pga/g; T,=028s, B=13

a a3M
2. Ky=Ky -a; K, 2e > ; K,, =209 gals, a; =001, a,=1.62, a5 =0.247
3. K,=a(pgaT); =06

To establish the attenuation relationship for D,, the program ARPED was utilized with the above input
parameters. The value of standard deviation of InD, , G| ., was taken as 4.5. The attenuation relationship
T

of Donovan (1973) worldwide, with standard deviation of In pga, G equal to 0.84 was used,

In pga

Inpga=7.185+0.58 M - 1.52 In (R + 25)
Using the program ARPED, the values of the coefficients in Eq. 27 were calculated as following
In Dr=19.904 + 8.911 M - 17.415 In (R +25)

The standard deviation, O.D. > of the predicted D, from Eq. 21 was also calculated and ranged between 4.3
T
and 5.7 for D, ranging between 2 and 300 cm, respectively.

Using the attenuation relationship for D, (Eq. 27) and the seismicity parameters for the example site, the
annual number of earthquakes causing D, to exceed d, = 0 to 300 cm (0 to 10 ft) were calculated using the

computer program MITRISK (Schumacker & Whitman 1978). Figure 2 shows the probability of exceedance
in 50 years as a function of d.. The two curves in the figure correspond to the lower and upper bound values



of O, - The results show that variations in G| , has only a small effect on the calculated probabilities.
T I

To further illustrate the benefits of using the procedure in sensitivity analysis, the acceleration attenuation
relationship of Donovan (1973-worldwide) was replaced with that of Idriss (1991). The results shown in
Figure 3 indicate that the computed probability values are very sensitive to the attenuation law selected in
the analysis.

Another observation that can be made from this example is that the probability of exceedance does not
change significantly for d, > 30 cm. Hence, the definition of catastrophic damage is not very sensitive to the

value of d, , provided that d. > 30 cm.

CONCLUSION

In summary, the risk analysis procedure for earthquake-induced permanent deformation of earth dams
presented in this paper can easily provide preliminary estimates of probability of such deformations
exceeding selected value d.. Such analysis can be used to identify the important parameters and assumptions

that influence seismic risk of an earth dam. Furthermore, the procedure can provide rapid assessment of
permanent deformations risk for an inventory of dams in a certain geographic region. Such estimates of risk
can help prioritize the dams that would require complete risk analysis and/or program of rehabilitation.
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Fig. 1. Cross Section and Geotechnical Properties of the Example Dam -Analyzed
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