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ESTIMATION OF CUMULATIVE DAMAGE OF BEAM-COLUMNS AND FRAMES
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ABSTRACT

A method of estimating the cumulative damage of structures and their members subjected to
repeated loading is proposed. Progress in cumulative damage in structures subjected to repeated
loading converges or diverges with the increase of the repetition cycle, depending on the magnitude
of the constant vertical force. From this fact,, critical axial force for convergence-displacement
relation is proposed as a basis for estimating the cumulative damage of structures. In this paper, 1)
the critical force for convergence of the reinforced concrete beam-columns are given by tests and
analyses, 2) that of deteriorating stecl beam-columns subjected to sinusoidal dynamic loading by
clasto-plastic analyses and 3) that of frames subjected to constant vertical forces and a repeated
horizontal force by finite element method. Usefulness of critical force for convergence -
displacement relation for estimating the cumulative damage of structures and their members
subjected to repeated loading are verified by these tests and analyses.
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INTRODUCTION

The instable behavior such as the local buckling or the crash of concrete often causes strength
deterioration in beam-columns subjected to the constant axial force and the repeated horizontal
force during an extremely strong earthquake (Fig. 1). Since the deteriorating behavior closely
correlates with the accumulation of deformation, it is necessary to investigate the accumulation of
deformation. The strength deterioration and the accumulation of deformation in frames and their
members subjected to repeated loading are named “cumulative damage™ in this study. Progress in
cumulative damage in beam-columns subjected to repeated loading converges (“a” in Fig. 2) or
diverges (“b” in Fig. 2) with the increase of the repetition cycle, depending on the magnitude of the
axial force. From this fact, the convergence boundary of the accumulation of damage is expected to
exist. The method of evaluating the cumulative damage of beam-columns and that of frames for
controlling the cumulative damage arc proposed based on the convergence boundary of the
accumulation of deformation in beam-columns or structures subjected to repeated loading. The
validity of the proposed mecthod for evaluating the cumulative damage is verified by tests and
analyses of reinforced concrete beam-columns, dynamic analyses of steel beam-columns and finite
element analyses of steel frames.



EVALUATION OF CUMULATIVE DAMAGE BY CRITICAL FORCE FOR CONVERGENCE

Critical axial force for convergence is a limit value of the axial force when the accumulation of
deformation converges, and the relation between critical axial force for convergence and converged
axial displacement is proposed for evaluating the cumulative damage of the beam-column such as
strength deterioration. The value of the critical axial force of the beam-column is given by the
minimum value of the axial force varying while a repeated horizontal force and an axial
deformation in the converged state are applied (Uchida et al., 1992, 1995). Since "critical axial
force for convergence" is very long, it is termed "critical axial force" hereafter. The relation
between the critical axial force and the maximum value of displacement varying in the converged
state is defined as critical axial force-axial displacement relation. The critical axial force p-axial
displacement § relation of a beam-column subjected to a repeated horizontal force (Fig. 1) is shown
in Fig. 3(a). In general critical axial force-axial displacement relation forms the hysteresis loop.
The accumulation of deformation and the progress in strength deterioration immediately converges
under the constant axial force p,and p,°, but diverges under the constant axial force p, and p,” (Fig.
2, 3(a)). Point A in Fig. 3(a) represents a bifurcation point on the path of the accumulation of
deformation (Uetani ef al., 1983). At the onset of bifurcation, the accumulation mode of
deformation changes and the critical axial force deteriorates likewise the bifurcation in the usual
load-displacement relation. Horizontal force k-horizontal displacement o, relation in Fig. 3(b)
represents the resisting capacity for the horizontal force, while the shape of the critical axial force p
-vertical displacement § relation in Fig. 3(a) indicates the resisting capacity for the cumulative
damage.

CRITICAL AXIAL FORCE OF REINFORCED CONCRETE BEAM-COLUMNS

Methods of Experiment

Reinforced concrete beam-columns under a axial force and a repeated horizontal force were tested
for obtaining the critical axial force. Figure 4 shows configurations and dimensions of specimens.
Specimens RC1~RC3 are bending failure type specimens( shear reinforcement ratio p=0.85%) and
Specimens RC4~RC6 shear failure type ones( p=0.43%). Experimental dimensions, strength of
concrete and material properties of reinforced bars are listed in Table 1., Table 2. and Table 3.,
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Fig. 3. Critical axial force and horizontal force.
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respectively. Figure 5 shows a test set-up in which a specimen is fixed at its end and subjected to
vertical and horizontal loads applied by hydraulic jacks. A slider is attached to the top of the
hydraulic jack for axial compressive and tensile loadings. The calculation method of critical axial
force was presented in the theorem published in Refs. (Uchida et al., 1992, 1995), and validity of
the method have been assured by analyses.

Specimens RC2 and RC5 were tested for obtaining the critical axial force for convergence. The
critical axial force is given by the minimum value of the axial force varying in the third cycle when
a repeated horizontal force and a constant axial displacement are applied. Specimens RC1 and RCé6-
were tested in order to verify the validity of critical forces. A constant axial force varied in the
stepwise manner in the vicinity of the critical axial force-displacement relation was loaded
Specimens RC1 and RC6 under a repeated horizontal force with a constant displacement amplitude
10mm.

Test results are exhibited in Figs. 6.~8. Figure 6 shows axial force p-axial displacement §_ relations
in which the maximum value and the minimum value of varying axial force are indicated by $-O
andO-O, respectively. Axial force p is normalized by the ultimate compressive strength of concrete
cross section. The critical axial force-displacement relation is expressed by the inner curve formed
by - andO-Ocurves. In Figs. 7(a), (b), p-0, relations derived from tests of Specimens RC1 and
RC6 under a constant axial force are shown together with the critical axial force-displacement
relation presented in Fig. 6. Steps of the constant axial force loading are designated by ~(0 and

Table 1. Experimental dimensions.

Spec. B B 1 h
No, (mm) (mm) (mm) Cmm) ———
A e PIO_ EN
RCl  149.2 1512 750.1 549.4 (Diameter El
=10mm g
RC2  149.0 153.1 7517 550.0 ) 2
RC3  150.1 1521 7510 548.7 Df— 2
RCA 1506 150.5 T49.7 549.9 2 ==
RS 150.3 150.6 750.6 549.3
RCGG  ISL7 5.6 T49.2 549.1 —;
B=width, D=depth of cross section L
I=length, h=length measured for §, |
a) Cross section b) Elevation
Table 2. Strength of concrete. @) (b)
Spec.  hge R Fig. 4. Specimen. (Unit=mm)
No.  (day) (kg/en®)
KCI 25 412 o 1 L
R2 20 339 ! ! !
7 T i ‘"TH T
R3S 29 407 : R (@) 8
' L o - I pin support i
RA 56 446 toading frase :xmw/eigm; o = —
S hydraulic jack | ;
o SO g
s 43 ! / :t load cell) ' ‘:f N
) ' e \ ‘ 1 specimin
RS 4T 420 hydrauiic jack | foad'cel| ez ’ e
p L . /' pin' S y o
F =compression strength Jl . R \ ; :Du\x\\‘ A ope
Table 3. Material properties of jl% —{ [ © " —
re-bars. 1| s T ;
Re- ay a. s X |
Bars  (t/em’) (Ven’) (%) v e _lL
e e slider ispl. meter
D6 3.96 6. 11 18.4
: 1,215 | 830 | s | e | 1,100 |

D-10  3.56 5.22 20.2 [

D-13 3.4  5.02 19.4 .
Fig. 5. Test set-up.

gy=yield stress,, gu.tensile strength, =elongation



O® . Symbols O and @ indicate the convergence and the divergence of the accumulation of
displaccment respectively. Figures 8(a) and (b) show the horizontal force h-horizontal displacement

and f-axial displacement 3, relations in loading steps 3 and 4 of Specimen RCI, respectively.
I-fonzontal force h is normalized by the theoretical ultimate strength {a, o, (D-2d )+O 12BDF }/¢,
where a,=total area of cross section of tension reinforced bars, d = depth of dover concrcte, £=length
of specimen. These figures express that the accumulation of displacement converges in the beam-
column under the axial force less than the maximum critical force but diverges under the axial force
greater than that. Consequently, it is noted from these results that the convergent and divergent
behavior of the accumulation of axial displacement can be predicted by the critical axial force for
convergence-displacement curve very well.

CRITICAL AXIAL FORCE OF STEEL BEAM-COLUMN SUBJECTED TO DYNAMIC
EXCITATION

Calculation of Critical Axial Force

The axial force-axial displacement relation of a steel beam-column subjected to dynamic excitation
is presented. Figure 9 shows one lumped mass model with a beam-column composed of a elastic-
plastic body and a rigid body analyzed. The cross section of a elastic-plastic body has three
elements(Fig.10). The stress-strain relation was assumed to be the degrading type in consideration
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Fig. 7. Critical axial force-axial displacement relation.
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of the local buckling. The stress s and the strain e are quantities normalized by yield ones.

The critical axial force for convergence of beam-columns subjected to dynamic excitation are given
by the following calculation procedure derived from extended application of the theorem in Refs.(
Uchida et al., 1992, 1995). The critical axial force for convergence, however, is defined to be the
critical one when the dynamic response remains stable but not stationary in case of static loading
after the dynamic excitation terminates.

1. Get time-history responses of horizontal displacement d, and the axial displacement d by the
dynamic analysis of a beam-column subjected to a dynamic excitation (Fig. 12. (a)).

2. Assume displacements in the converged state of accumulation to be d,+ Ad, and d + Ad , where
Ad, and Ad, are certain amount of displacement increments. The critical axial force for
convergence can be derived from a minimum value in the time-history of axial force p of the beam-
column subjected to assumed displacements d, and d _ (Fig. 12. (b)).

3. Go to Step 1 and get the time-history of dispfaccment response of a beam-column under a critical
axial force obtained in Step 2. The maximum value of displacement response and the critical axial
force becomes the critical axial force-axial displacement curve.

The numerical computation method to solve the equation of motion is Newmark's S method, where
B is taken equal to 1/4. Incremental method combined with initial stress method is taken for
iterative calculation procedure.

Results and Discussions

Analytical parameters are as follows:

a,=a,=0.3, a,=0.4: Dimensionless area of elements of the cross section shown in Fig. 10.

d,=d,=1: Dimensionless distance between the center of elements and the centroid of the cross
section.

e,=-3, ¢ =-10: Strain at which degrading of a stress starts as shown in Fig. 11.

p,=0.02, u_,=-0.08, p_=-0.01, u=0.02: Slope of the stress-strain relation shown in Fig. 11.

o= 2.4t / cm? Yield stress. A=0.01: Damping ratio.

X =20, 40, 60, 80: Slenderness ratio of beam-columns.

A =1.0, 1.5: Ratio of the intensity of excitation to the initial yicld strength of the beam-column
under a static horizontal force.

Ground acceleration is sinusoidal with the initial value equal to zero, of which frequency is 0.8
times the natural frequency of the beam-column. Critical axial force-horizontal displacement d,
and axial displacement d_ relations in case of A =80 and 4 =1 are shown in Figs. 13. (a), (b) . The
axial force p with the compression being taken negative is normalized by yield one.

Results of dynamic response analyses of beam-column under the axial force in the vicinity of the
maximum critical axial force p_, are shown in Fig. 13. Symbols (§) and @) represent convergence

Fig. 9. One lumped mass model. Fig. 10. Cross section of Fig. 11. Stress-strain
elastic-plastic body. relation.
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and divergence of accumulation of displacements, respectively. The symbol Il expresses the point
that the strength of the beam-column became zero, i.e. the beam-column collapsed. It is noted from
Fig. 13 that the accumulation of deformation of the beam-column under the axial force greater than
the maximum critical force diverges but converges under that less than the maximum one.
Therefore, the validity of obtained critical forces can be assured by these results.

Figure 14. shows the maximum critical axial force p-slenderness ratio A relation indicated by solid
lines and the limitation of axial force prescribed in Ref. (Architectural Institute of Japan, 1990) by

a dashed line. The figure expresses that the maximum critical axial forces are remarkably less than
the limitation and the value of critical axial force decreases as the value of A increases.

CRITICAL VERTICAL FORCE OF STEEL FRAME SUBJECTED TO REPEATED LOADING

Maximum Critical Vertical Force for Convergence of Frame

Steel frames subjected to a constant vertical force and a repeated horizontal force were analyzed by the finite
element method in order to investigate the critical vertical force, and a formula for calculating the maximum
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critical vertical force is proposed. Figurel5. shows an analytical model of the frame subjected to a
constant vertical load P, in the middle of the beam and the repeated horizontal force with a constant
displacement at the top of the beam-column in the left-hand side. Vertical forces P_loaded on the
top of beam-columns were taken equal to zero. Members of the frame and the cross section (Fig.
16.) were divided into elements. Figure 17. shows the history of displacement with an amplitude of
d,, given in the finite element analysis using the displacement incremental method. The degrading
type of stress s-strain e relation shown in Fig. 18. was adopted for the analysis in consideration of
local buckling.

The critical vertical force for convergence was defined as the critical force under the accumulation
of deformation converges to a given value. Equation (1) was proposed for the maximum critical
vertical force p,_ __of the model shown in Fig. 15.

P = 4Mpb/£b (D)

ber,max

where M, = full plastic moment of the beam, ¢ = length of beam.

Analytical parameters arc as follows:

CASE1 (Beam-Yield Type Frame, P, = 10.7t)

b, xd,=10x 10 cm, b x dcc;mix() x 15 cm
CASE 2 (Column-Yield Type Frame, P, .= 24t, 16t (modified in consideration of averaging the
distributed moment in plastic elements))

b, xd,=10x15cm, b, xd =10 x 10 cm
where b, d = width and depth of the cross section , respectively. Subscripts » and c¢ indicate quanti-
ties with respect to the beam and the beam-column, respectively.
Followings are other parameters chosen in analyses :
9,,=1.5cm, u,=0.005, u =-0.005, n,=-0.01, uC}=-O.005, length of beam-column #=100cm,
ratio of area of a element to that of gross section =1/3, distance between center of elements of the
cross section = d/3, yield stress o, =2.4t/cm?, Young's Modulus E=2100t/cm?

Results and Discussions

Curves in Fig. 19. are the maximum critical vertical force-horizontal displacement amplitude &,
relations obtained from numerical analyses. Upper curves are for column-yield type frames, an

lower ones for beam-yicld type frames. Solid symbols @, [ll, Aindicate the divergence of displace-
ment accumulation and holiow symbols O,[ ],/ the convergence of that. Results of non-deteriorat-
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ing beam-yield type of frames ( 1 =0.001) are presented in addition to those of deteriorating type in
Fig. 19. Thick solid lines indicate the maximum critical vertical forces P, derived from Eq. (1).
P, (C.Y., Modified) in Fig. 19. was calculated with the full plastic moment modified in consider-
ation of averaging the distributed moment of an element in the analysis. Figures 20(a), (b) show the
horizontal force H-horizontal displacement at node number 4 §, relation, H-vertical displacement at
node number 7 §, relation of the beam-yield type frames in case of P, = 9t, 10t, respectively. These
results exhibit that the cumulative damage of frames can be evaluated by the maximum critical ver-
tical force obtained from Eq. (1).

CONCLUSIONS

1. Cumulative damage of beam-columns and frames subjected to repeated horizontal loading or
dynamic excitation can be predicted fairly well by the proposed critical force for convergence-
displacement curves. Therefore, critical force - displacement curve is useful for estimating the
cumulative damage.

2. Constant axial force and constant vertical force affect the cumulative damage of beam-columns
and frames remarkably.

3. A gap between the applied constant force and the critical force represents the magnitude of

cumulative damage.

REFERENCES

Uchida, Y., . Mitani and A. Kadono(1992). Axial load limitation to keep aseismic safety of steel
beam-columns, Proceedings of the Third Pacific Structural Steel Conference, 545-552.

Uchida, Y.(1995). A method of evaluating damage in structures subjected to repeated loading,
Proceedings of the 44th Japan National Congress for Applied Mechanics, Vol. 44, 35-39.

Uetani, K. and T. Nakamura (1983). Symmetry limit theory for cantilever beam-columns subjected
to cyclic reversed bending, J. Mech. Phys. Solids, Vol. 31, 449-484.

Architectural Institute of Japan (1990). Standard for Limit State Design of Steel Structures (draft).

H o H o)
I 30 30 r
O Conv.(C.Y)
. Div.(C.Y)
Pb‘“ u] Conv. (B.Y)
25 . ] Div. (B.Y) )
© Conv. (C.Y ge=0.001) §vem
Phermax (C.Y) Iy Div. (C.Y e=0.001) -3.0
+ ; (C.Y : Column-Yigld  type|
20 [T . ‘DY : Beam-Yield type
N i i
i :
AQ Pbermax (Y Modificd) ;
"2 0 A ! 4
5 - e Y YU i
- [ B E I S )
Lo TR
A - i :
—L Pher,max ¥ B.Y)
10 [~ R - ) :
- a ., =
\E! N T
L A [
i : B
s | . : : . . |
0-|11| llllllllllllllllllllllll6Ha(cm) / 5H(cm) 0- 6\_“")
-2 ~{ o Jh 2 -
0 1 2 3 4 5 6 r °-0 -6.0
0 -10
Fig. 19. Maximum critical vertical force- 20
displacement amplitude relation. -20
N
=30 -301
(b)pp, = 10t

Fig. 20. Cumulative damage of beam-
yield type frame.



