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ABSTRACT

A new second order analysis method called Geometric Load Method is introduced, for the first time, in a
context of dynamic inelastic analysis method and applied to plane frames. The objective is to enhance the
modelling of non-linear inelastic behavior of steel structures subjected to earthquakes. Since existing
methods employ geometric stiffness matrices, the analysis has to follow the load-deflection path, during
the snap-through (post-buckling) region. For a path-dependent analysis, such as cyclic inelastic, the load
reduction during snap-through region(s), unrealistically changes the loading history, and hence the
prediction of stress/strain behavior. In the proposed method, second order effects are not considered in the
calculation of stiffness matrices. In each static analysis, a series of iterative steps follows each load step to
account for unbalanced forces produced by change of geometry. Consequently, the proposed method can
continue with the loading, and produces more realistic results. Members are modelled as beam columns,
with simple but comprehensive set of differential equations. For inelastic analysis plastic-zone method is
used, while for dynamic loading, time history analysis is employed. The method is evaluated by
calibrating its results with those from a static elastic second order analysis of the shallow circular arch
problem, treated elsewhere.
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INTRODUCTION

Cyclic nature of earthquake loading demands different type of resistance in structures. Researchers have
been working to find and compare different types of earthquake resistant structures. Most of the work in
this area has been on actual tests rather than analytical modelling. UBC (1988) recognises Special
Moment-Resisting Space Frames (SMRSF) as reliable ductile systems. The most difficult task faced by
such researchers is to find ways to balance the strength of columns, beams and panel zones of buildings,
in such a way to prevent their premature collapses. Topic of column hinge formation vs. beam hinge
formation has been the source of controversial discussion among engineers and researches which



indicates the need for further work in this area. As search continues for finding better alternatives,
attention was paid to bracing systems. While concentric bracing systems are not ductile, eccentric bracing
systems (shear links) are promising alternatives as they may utilise material more economically, from
energy absorbent point of view. Since experimental testing is expensive, only limited number of tests
may be conducted, which is insufficient to provide conclusive information. On the other hand, since
inelastic design of structures has not reached its maturity phase, building codes avoid direct inelastic
analysis. Based on the above discussion, it is most desirable to develop an analytical model that can
predict the behavior of structures subjected to earthquakes, as closely as possible. Such a system simulates
the behavior of a structure during earthquakes up to its collapse, and evaluates its overall performance as
well as the performances of its members.

With above objective in mind, the first author started a research program, on modelling non-linear
inelastic behavior of plane steel frames subjected to earthquakes. Such modelling could be used as a
substitute for costly tests. Similar attempts have been made by Challa and Hall (1994), Prakash (1992)
and Allahabadi (1987). The reason for choosing steel is the fact that it is extremely ductile material
compared to concrete (or even reinforced concrete). Such a research also establishes basis for the three
dimensional modelling. While the existing second order methods are not suitable for inelastic analysis, as
will be explained, the method proposed in this paper is suitable and crucially important for such analysis.
Being original, the method has been independently developed and will be explained in more detail in
(Nassiri, to be published).

Since existing methods employ geometric stiffness matrices, explained in the next section, analysis has to
follow the load-deflection path, which means, the load needs to be reduced during snap through region(s).
Since in cyclic inelastic loading, stress/strain behavior is dependent on the history of the loading (path
dependant), such a load reduction unrealistically changes loading history, which consequently affects
prediction of stress/strain behavior. One such example is frequent inelastic buckling of bracing system
without collapse of the whole building. In the proposed method, second order effects are not included in
the calculation of stiffness matrices. Unbalanced forces are calculated and applied separately to the
structure. Therefore, the proposed method is superior to the previous methods, since loads do not need to
be reduced. This new method may be called Geometric Load method, in future references as opposed to
all methods based on the Geometric Stiffness Matrix approach. The proposed new method also is easier to
implement and more accurate, since it captures all the second order effects (including P-A and P-3). Other
aspects of the method including the set of employed differential equations add to its accuracy. The
method is initially applied to the analysis of plane frames, but it may be extended to three dimensional
finite element structural systems.

In this paper, the main focus is on elastic second order analysis which may be used as the basic and
crucial tool for dynamic and/or inelastic analysis. Other issues regarding realistic modelling of steel
structures subjected to earthquakes, including stress/strain modelling, treatment of flexible joints (panel
zones), and effect of shear strains in member deflections are under investigation.

REVIEW OF STATIC ANALYSIS METHODS

Studies on limit state design of structures have shown that first order analyses can not closely predict
building behaviors. On the other hand studies on earthquakes show that the so called P-A effects are
greatly responsible for building failures. The second order inelastic-zone method based on the finite
element approach is known to be the best static analysis method that closely models inelastic behavior of
structures (Ziemian, 1990). In inelastic (plastic) zone method, line members of structures are divided into
segments, while their cross sections are divided into smaller areas, resulting in discretisation of structures
into fibres as shown in Figs. 1 and 2 (White, 1985; Morales, 1994). Each fibre in this type of analysis has



its own stress/strain history. Tangent modulus (£,) of such fibres are obtained, based on the constitutive
stress/strain models (Chen and Han, 1988).

To account for second order effects, geometric stiffness matrices are calculated, using energy (work)
based methods. These methods are extensively covered in the literature (Bathe, 1982; Bergan et al., 1978;
Chen 1991). Two widely used approaches are Total Lagrangian and Updated Lagrangian methods.
Because of the nonlinearity of the problem, incremental methods are mostly used for static analysis. To
solve the incremental equations of equilibrium, Newton-Raphson method is employed using load
controlled steps. Since this method fails near the limit points, several other methods have been developed
to follow load-deflection path in the pre- and post-critical point regions (such as snap-through and snap-
back). These methods include displacement control method, arc-length method, work control method
(Bathe, 1982; Bergan et al., 1978; Chen, 1991; Clarke and Hancock, 1990).
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Fig. 3. Cantilever beam-column discretised into 8 segments. Fig. 4. Beam-Column increment.

DESCRIPTION OF THE PROPOSED METHOD

The proposed method is applied to plane frame analysis (which may be extended to any finite element
structural system) based on the following assumptions and approaches.

e Each line member is treated as a beam-column. The principle of beam theory applies which implies
after bending cross sections of members remain plane. Effect of shear strains in member deflections are
ignored in this study.



¢ No out of plane behavior is considered in this study. For this reason, the cross section is assumed to be
symmetrical in regards to local y axis (Fig. 2), which is significant in inelastic analysis.

e The right hand Cartesian global (X,Y,Z) and local (x, y, z) coordinate systems are chosen, in which the
local x axis is tangent to the neutral axis, the local y axis is the axis of symmetry of the cross section,
while the local z is parallel to global Z (Figs. 1 and 2). Member stiffness are calculated based on the
global coordinate system.

e All external loads are defined in the global system providing that loads retain their original direction at
all times, even when the structure is dramatically deformed (Fig. 1). However, internal forces (axial
and shear forces as well as bending moments) on member sections (at the intersection with neutral
axis) are calculated in the local system (Fig. 3). Such a system helps to accumulate unbalanced forces,
and apply them slowly using small steps (without losing their validity).

e For any differentiation or integration along a member, parameter s, length of the curved member, is
used instead of local x. This increases accuracy in the case of extreme member deflections.

e Each member is divided into certain number of segments. Such a member, from global point of view,
is assumed to be one member having one start joint and one end joint. This means the segments of each
member could be used to calculate the member stiffness matrix and member end forces, but will not
directly participate in the assemblage of global stiffness matrix. The intermediate points along each
member representing ends of segments are called nodes in this study (Fig. 3).

Differential Equations of Beam-Column Deflections

An increment of beam column is shown in Fig. 4. Before the load step, AX = As.cos6 and AY = As.sin0,
while after the load step, AX+8X = (Ast+ds)cos(6+d6) and AY+3Y = (Ast+ds).sin(0+d6). In these
equations, 8 is a shorthand symbol showing combination of d and A [eg. §X means d(AX)], while €, is
total axial (normal) strain at a point along the neutral axis. Combining the above equations and using s =
As.dep.

86X/As = cos(0+d0) - cosO +dep,. cos(6+d0) 1)
8Y/As = sin(0+d0) - sin6 +dey,. sin(6+d0) ()

Equations 1 and 2 give change of AX and AY relative to As for large load steps. For small steps it may be
assumed that sind® = d0, cosd® = 1, and dej.sind® = 0. Replacing these terms with their corresponding

valuesin 1 and 2.

OX/AS = - 5in0.d6 + cos0. de, _ ?3)
dY/AS = ¢0s0.d0 + sin6. dep, 4

In this case, displacements remain linear during each load step. Equations 3 and 4 are simple and
comprehensive, comparing to conventional beam-column differential equations given in the literature.
These equations are used in the method, since it is based on small steps.

Cross Sectional Properties

Effective properties for cross sections are calculated as follows.
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In the above equations, E and E, are modulus of elasticity and tangent modulus of elasticity of increment
i, respectively, while N is the number of increments of area on the cross section. Similar equations are
given in (White, 1985; Clarke and Hancock, 1989).

Beam-Column Cantilever Model

The model of beam-column cantilever is used as the basic model to calculate member stiffness matrices
and member fixed end forces. Member deflections are calculated using numerical integration technique.
Values at the nodes along each member are maintained and used for integration. Three point Gausian
quadrature method is used for numerical integration, with possibility of unequal segment lengths
(originally and/or after the loading). The following equations are employed in the procedure.
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In the above equations, f'and m are total axial force and bending moment, while 6 shows total angle that
local x axis makes with global X axis, and ¢ represents member curvature, at a node along the member.

Treatment of Different Loading Types

Loading are treated at different levels, where dynamic analysis is at the highest level. Dynamic analysis
is performed as a time history analysis, where the acceleration is assumed to change linearly during each
time step. The method is unconditionally stable for elastic analysis, but for inelastic analysis, further
investigations are needed. No out of balance energy in this process is measured or controlled as explained
in (Allahabadi, 1987).

Each static loading whether being a direct static loading or the loads produced by one time step of
dynamic loading, is analysed based on the incremental analysis. In this method each incremental loading
consist of one external loading step plus zero or more correctional loading steps.

Since in this method second order effects are not accounted for, in the calculation of tangent stiffness
matrices, correctional (geometric) load steps are applied to the frame, in which, each load step is a
fraction of existing unbalanced forces. Such forces are accumulated after application of each load step as
functions of change in the geometry of the nodes. Within each incremental loading, correctional loading is
continued in small steps until total unbalanced forces are negligible. Since unbalanced forces are in terms
of internal forces defined in local systems, any deflections during the delay in their applications have no
effect on their validity. As long as external loads are not extremely large, such simple iterative process
always converges. During buckling, unbalanced forces are increased after each correctional step, causing



divergence from equilibrium, but either such forces subside after a while, or the building collapses.
However, in the unlikely case that loads (hence internal forces) become extremely large, before the
building collapses, different methods may be used to prevent divergence. As far as dynamic analysis is
concerned, it is assumed that all the sub steps of each time step are performed in no time and finished
within such a step (even during buckling).

Each loading step, whether being external or correctional is analysed using conventional stiffness method,
with some exceptions as will be explained. For each loading step, a fraction of set of existing loads are
applied (load control method). Different means may be used to control the load factor, including
increments of fibre axial strains (de) and/or increments of node curvatures (d$). For inelastic analysis,
fibres’ tangent modulus’s of elasticity (£,) and members’ cross sectional properties are updated, at the
beginning or end of each step. Emphasise is on simplicity, using small load steps. Therefore material
properties (and hence cross sectional properties) are assumed to remain constant during each step. It is
further assumed that no unloading (stress/strain reversal) happens during each step. In addition, no event-
to-event approach is used to control steps as explained in (Allahabadi, 1987), and no correction is made
after each step for any discrepancy which may exit, since such differences are extremely small. For
greater accuracy, no closed form expressions are assumed for stiffness matrixes, since using such
expressions may compromise accuracy. These matrices are obtained during each step, using the beam-
column cantilever model as was mentioned in the relevant section.

The provisions are made to have more than one loading present (eg. on a building, dead loads are applied
as the first loading, then earthquake loads are applied as the second loading, which may be used to test
effect of P-A on the building).

EVALUATION OF THE PROPOSED METHOD

To evaluate the method, an example is taken from (Clarke and Hancock, 1990) as shown in Fig. 5a. This
problem is widely used in the literature for the complex behavior it shows during snap through region
(Fig. 5b). The results produced by the proposed method are depicted in Fig. 6, which closely match the
results given in Fig. 5b. To verify the accuracy, starting from no load (point A), the arch was loaded up to
2000 force unit downward (point D on the curve), then unloaded and reloaded (loading reversed) up to
1200 force unit upward (point G), then unloaded again to no load (point H). Points 4 and H are
theoretically supposed to match (since the problem is elastic), but there is about 5 length unit (1/2000 of
total span) gap, which is relatively a small error. Lines BC and EF correspond to the buckling regions.
Following the loading and unloading paths, and connecting significant points produces the sequence
ABCDCEFGFH. As it can be seen paths CD matches with DC and FG with GF. The error produced in
the (loading-unloading) process, is neither the real error for real case loading, nor may reflect errors
associated with linear analysis. However, it may reflect errors directly associated with non-linear analysis,
and may cautiously be used to compare performances of different second order methods of analysis. Other
details of the example are as follows. The whole arch was discretised into 50 segments. The limits to
control load factor were chosen .0001 and .00005/(length unit) for de and d¢, respectively. The related
computer program is written in C on IBM compatible PC. A special graphical representation of building

deflections can produce animation of its movements. This problem only takes a few minutes to run on a
486-DX2 / 66 Mhtz.

CONCLUSION

A new second order analysis method called Geometric Load Method is introduced to facilitate accurate
inelastic analysis of structures. The objective has been to enhance modelling of non-linear inelastic
behavior of steel structures subjected to earthquakes. The results of static elastic second order analysis are



verified for the shallow arch problem. The results are in excellent agreement with the results given
elsewhere. The process of loading and unloading (to the original no load case) was used to determine the
error, which is recommended to be cautiously used to compare performances of different methods of
second order analysis. The method is straight forward, and easy to implement. In addition, it may be
extended to any other finite element structural system. In the unlikely case of extreme loading, before
collapse of the building, solutions are available to prevent divergence during correctional steps, which are
not discussed in this paper. Other relevant issues such as stress/strain modelling, treatment of flexible
joints (panel zones), effect of shear strains in member deflections, etc. are being investigated.
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Fig. 5. Shallow circular arch subject to near central point load
from (Clarke and Hancock, 1990).
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Fig. 6 Load-Deflection curve produced by the proposed method
for the example problem (shallow circular arch).
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