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ABSTRACT

The main objectives of this paper are: to discuss the need for earthquake-resistant design (EQ-RD) and EQ-
resistant construction (EQ-RC) approaches that will result in buildings with more predictable performance under
EQ ground motions (EQGMs) than structures built according to current approaches; to present a general
conceptual framework for performance-based EQ-RD and EQ-RC; to review a general comprehensive
performance-based EQ-RD approach based on the use of energy concepts, performance (or damage) indices, and
fundamental principles of structural dynamics and comprehensive design philosophy; to compare the general
approach to current code; and to identify research needs for improving the proposed approach and its
implementation in practice.
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INTRODUCTION

A teview of the performance of facilities during the EQs of the last decade, particularly the 1989 Loma Prieta,
the 1994 Northridge, and especially the 1995 Great Hanshin, clearly shows the need for EQ-RD and EQ-RC
approaches that will result in civil engineering facilities that perform more predictably under EQGMs. The
number of people mace homeless and the level of economic loss from physical damage to nonengineered houses
and engineered facilities, and particularly from functional and indirect damages, are socially and economically
unacceptable. This is not surprising in view of the insistence of current seismic codes on EQ-RD approaches that
are based on just a life-safety performance level which has no clear quantitative definition, and on following
procedures that satisfy only strength requirements. Although the understanding of the basic problems created
by EQs and of the behavior of structures subjected to EQGMs has improved significantly, and this improvement
has been reflected in the formulation of improved code requirements for the design and particularly the detailing
of structural members, current seismic code design approaches fall short of realizing the goals and objectives
of the worldwide-accepted philosophy of EQ-RD. Present seismic codes are not transparent, i.e., their regulations
do not present in a visible way the basic concepts that govern the EQ performance of civil engineering facilities.
Arising from the above need, already pointed out by the 1989 Loma Prieta EQ and emphasized by the 1994
Northridge EQ, the Structural Engineering Association of California (SEAOC), established the Vision 2000
Committee to develop a conceptual comprehensive framework for seismic codes. This framework, which is
called performance-based seismic engineering, regulates all areas that a seismic code should: conceptual overall
design, preliminary numerical design, acceptability analysis, final design and detailing, quality assurance during
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construction and monitoring of occupancy and maintenance. The authors, based on studies they conducted
previously, have developed and incorporated into this performance-based seismic engineering a comprehensive
EQ-RD approach. It considers four performance levels (service or fully operational, operational, life safety, and
impeding collapse) and four levels of EQGMs (frequent, moderate, rare, and very rare or extreme). The iterative
procedure involved in this general comprehensive approach is reviewed below in some detail. The conceptual
methodology for the comprehensive performance-based EQ-RD was developed in accordance with the
comprehensive design philosophy and in compliance with the worldwide-accepted EQ-RD philosophy, and is
based on the use of energy concepts and fundamental principles of structural dynamics. It takes into account
from the beginning of the EQ-RD procedure the simultaneous demands for strength (C,), deformation (8) and
rate of deformation (including torsional effects), and their combined effects on the energy input (E;), on the
demanded and supplied energy capacities [Eg (elastic energy) = Ex (kinetic) + Eg (elastic strain), and the Ep,
(dissipated energy) = Eyy, (hysteretic plastic deformations) and Egy (damping)] of the entire facility system and
on the acceptable damage at the different limit states associated with the desired performance levels. Before
discussing this comprehensive EQ-RD approach, it is convenient to define and discuss briefly what is understood
by performance-based seismic engineering.

PERFORMANCE-BASED SEISMIC ENGINEERING

The Vision 2000 Committee of SEAOC in its 1995 report has defined performance-based seismic engineering
as "a process that begins with the first concepts of a project and lasts throughout the life of the building. It
includes identification of seismic hazards, selection of the performance levels and design performance objectives,
determination of site suitability, conceptual design, numerical preliminary design, final design, acceptability
checks during design, design review, quality assurance during construction, and maintenance during the life of
the building.” A conceptual framework for performance-based seismic engineering has been developed. This
framework, which focuses on the case that seismic hazards control the design of building facilities, encompasses
the full range of seismic engineering issues to be addressed in the design, construction and maintenance of
structures for predictable and controlled seismic performance within established levels of risk. Herein only the
methodology of the proposed comprehensive EQ-RD approach will be discussed.

COMPREHENSIVE EQ-RD APPROACH

Selection of Performance Objectives

The first step of the comprehensive design approach is the selection of the performance objectives. These are
selected and expressed in terms of expected levels of damage resulting from expected levels of EQGMs. This
selection is made by the client in consultation with the design professional based on consideration of the client’s
expectations, the seismic hazard exposure, economic analysis and acceptable risk. A design performance
objective couples expected performance level with levels of possible seismic hazard, as illustrated in the
Performance Objective Matrix (Fig.1). Performance levels are defined in terms of damage to the structure and
nonstructural comporents, and in terms of consequences to the occupants and functions of the facility. The
performance levels in Fig. 1 are as follows: Fully Operational or Serviceable (facility continues in operation with
negligible damage); Operational or Functional (facility continues in operation with minor damage and minor
disruption in non-essential services); Life Safety (life safety is substantially protected, damage is moderate to
extensive); and Near Collapse or Impending Collapse (life safety is at risk, damage is severe, and structural
collapse is prevented). The seismic hazard at a given site is represented as a set of EQGMs and associated
hazards with specified probabilities of occurrence (frequent, occasional, rare and very rare).

Performance objectives typically include multiple goals. For example, for a given site they may be: fully
operational in the 43-year event, operational in the 72-year event, life-safe in the 475-year event, and collapse
prevention in the 970-year event. Two set of objectives are identified. (i) Minimum objectives: within this set,
the Basic Objective is defined as the minimum acceptable performance objective for typical new buildings, while
Essential/Hazardous Objectives and Safety Critical Objectives are defined as minimum objectives for facilities
such as hospitals and nuclear material processing, respectively. These three minimum objectives are illustrated
in Fig. 1 as diagonal lines in the Performance Objective Matrix. (ii) Enhanced objectives: other objectives
providing better performance or lower risk than the minimum objectives may be selected at the client's discretion.
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Figure 1. Recommended Seismic Performance Objectives for Buildings (SEAOC, 1995)

These objectives are termed "enhanced objectives." The selection of performance objectives sets the acceptability
criteria for the design. The performance objectives represent performance levels, or damage levels, expected to
result from the selected corresponding design EQGMs. The performance levels are keyed to limiting values of
measurable structural response parameters, such as drift, deformation rates, and ductility (monotonic and
cumulative) demands. When the performance levels are selected, the associated limiting values become the
acceptability criteria to be checked in later stages of the design.

Site Suitability

Before starting the structural design process, site suitability and seismic hazard analysis must be undertaken
considering the proposed performance objectives. The EQGM design criteria are established and characterized
in a form suitable for the anticipated structural analysis and design methods. Seismic hazard analysis determines
the design EQGMs and other significant actions for the specified design events considering all critical seismic
sources. It has to be decided whether it is economically possible to build the building on the selected site.

Conceptual Overall Seismic Design

Once the performance objectives are selected and the site suitability and seismic ground motions are established,
the structural design process begins with the conceptual overall seismic design of the facility and acceptability
checks of the conceptual overall design. Since the conceptual design is closely tied to the desired performance
of a building, guidelines specifying appropriate limitations for configuration, structural layout, structural system,
structural materials, and nonstructural components and their materials are needed for each performance objective.
These must be defined in terms that are usable at the conceptual design stage. The level of restriction should
increase in severity with the level of performance objective, and should reflect the excellent historical
performance of regularly configured structural systems composed of well-detailed ductile materials properly
constructed and maintained. A list of guidelines for overall seismic design of the entire building system is given
in Appendix B of the SEAOC 1995 report.

Selection of the structural system and the design strategy to be used in the preliminary EQ-RD and the final
sizing and detailing of the structural members should consider application of energy concepts through the use
of the energy balance equation, which can be written as:

E = Eg + Ey = Eg + Eg + Epp + Eg 1)

where E; is the energy input at the foundation of the building due to the EQGMs, Eg is the stored elastic energy,
Ep is the dissipated energy, Ey is the kinetic energy, Eq is the strain energy, EH{; is the energy dissipated



through hysteretic damping and Ey | is the energy dissipated through hysteretic plastic deformation. The designer
analyzes whether it is technically and economically possible to balance the seismic demand (Ep) using only the
elastic behavior of the structure (Eg), or whether it is better to attempt to reduce Eg by dissipating the effects
of E; as much as possible using Ep, As shown in Eq. 1, there are three ways to increase Ep;: one is to increase
the linear viscous darnping, EHF; - another is to increase the plastic hysteretic energy, EHp ; and third is a
combination of increasing both.’It is common practice to try to increase Egy as much as possible through
inelastic behavior through the use of deformation ductility ratio, which implies damage of structural members
throughout the structure. Only recently has it been recognized that it is possible to increase Eyy significantly and
control damage through the use of energy dissipation devices at proper locations throughout the structure.
Increasing Ep, by increasing Ey rather than Ejy, has the great advantage of providing control of the structure’s
behavior through all of its limit States (impending collapse, safety, operational or fully operational performance
levels). Increasing Eyy, by just increasing p will not improve behavior at the service limit state. If it is technically
or economically impossible to balance the required E; by Eg alone or through Eg + Ep,, the designer has the
option of attempting to decrease the E; to the structure. This can be done by seismic base isolation techniques.

Comprehensive Numerical EQ-RD

In accordance with the comprehensive design philosophy, in the comprehensive EQ-RD approach an iterative
procedure that starts with an efficient preliminary EQ-RD is recommended. The preliminary EQ-RD is divided
into two main phases: establishment of the design EQGMs, and numerical preliminary design procedure.

First Phase: Establishment of the Design EQGMs. The essential information needed is the time history of the
expected EQGMs at the different recurrence periods of the performance levels to be considered. Because of the
uncertainties in predicting such EQGM:, it is necessary to specify for each recurrence period a suite of EQGM
time histories. With this information, engineers can compute the specified detailed information needed to conduct
the preliminary EQ-RD and acceptability analysis. The specific information to be obtained from processing the
time history of the EQGMs at each of the recurrence periods are the Smoothed Inelastic Design Response
Spectra (SIDRS) for strength, total acceleration, velocity, displacement, energy input and energy dissipation
corresponding to the predicted or established suite of EQGMs. These spectra have to be computed considering
the different levels of displacement ductility ratio, pg , that can be accepted according to the desired performance
(damage) at the recurrence period under consideration. These spectra should include as a particular case the
Smoothed Linear Elastic Design Spectra (SLEDRS) for pg = 1, and the SLEDRS corresponding to the EQGMs
inducing allowable stress.

Second Phase: Numerical Preliminary Design Procedure. In order to arrive at the desired final design, it is
necessary to start with a preliminary numerical design procedure, whose main objective is a design that is as
close as possible to the desired final design. The numerical preliminary design phase consists of three main
groups of steps: (i) preliminary analysis, (ii) preliminary sizing and detailing and (iii) acceptability checks of
the preliminary design.

In the preliminary design, the structural framing elements are sized and checked against selected criteria. The
sizing is accomplished using a systematic design approach, which usually involves designing to at least meet two
performance design objectives, one for full operation (service) and one for life-safety.

(i) Preliminary analysis. The preliminary analysis can be formulated using an equivalent single-degree-of-
freedom (SDOF) system as follows:

GIVEN: Function of building and desired performance design objectives; general configuration, structural layout,
structural system, structural materials and nonstructural components and contents; gravity, wind, snow and other
possible loads or excitations; and SLERS, SIRS and y-spectra for frequent minor and rare major EQGMs. The
parameter 7 is defined by Fajfar (1992) as:

m

where o is the frequency associated with the fundamental period of translation (T) of the structure, and m is



the reactive mass.

REQUIRED: Establishment of design criteria (acceptable damage levels under the established EQGM levels),
minimum stiffness (or maximum period T) and minimum strength of the building capable of controlling the
damage, the design seismic forces; and the critical load combinations.

SOLUTION: based on a transparent approach that take into account from the beginning that the building
structure is a multi-degree-of-freedom (MDOF) system and that there can be important torsional effects even
under service EQGMs (i.e., in the linear elastic response), and that for safety EQGMs these effects can be
different; and that it is also necessary to consider the desired damage index (control of damage) corresponding
to the hysteretic behavior of critical regions of members and connections, and the ductility ratio that can be used,
as well as the expected overstrength.

Figure 2 shows a flow chart of the steps involved in the preliminary analysis. As shown in this figure, to initiate
the preliminary analysis it is necessary to quantify the performance objectives by setting limits to the maximum
value of all relevant response parameters, which for the case illustrated in this paper are: interstory drift demands
for the service and safety limit states (IDIggg and IDI, g, Tespectively); damage, through the use of damage
indexes (DMgggr and DMgp); and probability of failure (PFggp and PFg,p). This quantification is possible
through the knowledge of the qualitative definition of the Performance Objectives and through initial estimates
of some of the relevant mechanical characteristics of the building, which should be established during the
Conceptual Overall Seismic Design. For example, consider the limiting value assigned to IDIggg or IDIg g
these values depend rot only on the performance objectives, but also on the mechanical characteristics of the
nonstructural elements and the detailing of their connection to the structure.

Because the preliminary analysis is formulated using an equivalent SDOF system, and this model cannot provide
direct estimates of the local seismic demands, it is necessary to consider limits to the maximum value of the
relevant response parameters at the global level. Thus, it is necessary to set limits to the global displacement
demands in the building for service (S4 SgR) and safety (Sq gap) from their corresponding limits for IDIggp and
IDIg o As shown, this is done by using the available estimates of the mechanical characteristics of the building
to establish: a first mode shape, torsional effects, deviation from first mode shape, and concentration of plastic

rotation demands over height.

Next, it is necessary to establish a value of target displacement ductility ratio, pgag - defined as the maximum
value of pg that the structure can undergo during the safety limit state as limited by the requirement that the
dqmanded EH for thl.‘nS BsTAR Will not excged the supph.ed. EH,1 capacity. As shown,.estabhshm.g PsTAR Tequires
using the available estimates of the mechanical characteristics to consider: concentration of nonlinear deformation
demands, ultimate deformation capacity under monotonically increasing deformation, stability of hysteretic cycle,
and Eyy, demands. The Epy, demands can be estimated through the use of a y-spectra obtained according to the
estimated equivalent damping coefficient for safety (Egzp) and the return period associated with the design
ground motion for safety (Tg,). Although in many cases the value of ¥ is practically independent of the T; and
ps (provided pg 2 2), in some cases, such as EQGMs with very narrow frequency content, it may be necessary
to consider the dependence of ¥ on T;. Using the Park-Ang damage model (1985) and the parameter v, estimates
of pgrar can be obtained from the following equality:

DMoar Oumen _ 5 4 gy, o @)

B, 6

where 0 is the maximum rotation at the critical section during the seismic response; 8, ... the ultimate
monotonic rotation for the critical section; B, a parameter that quantifies the IDI increase due to concentration
of plastic rotations in one story; and B a parameter that characterizes the stability of the hysteretic behavior of
the frame members. In general, ® = maximum IDI in multistory frames, so that 8 = IDIg g can be considered
as an upper bound for 8. On the other hand, 6, ., and P depend on the designer’s decision about the kind of
connections, detailing, level of axial load and shear at critical regions (plastic hinges), and aspect ratio of
members. For example, for RC structures the designer could increase the amount of stirrups at critical plastic
hinges (increasing 6, ,,,,) to increase the value of pgrag considered in the design of the EQ-resisting structure.
Once the pspag has been established, it is necessary to estimate the value of Ty 5g , Which is defined as the
maximum value of T; that the structure can have to limit the deformation demands to values equal to or smaller
than those imposed by the performance objectives for structural and nonstructural damage (i.e., according to the
values of IDIggg and IDIgg). As shown in Fig. 2, this is possible through the use of the displacement limits
established for the service and safety limit states and their corresponding displacement spectra. Note that the
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service displacement spectra is computed using a pg of 1 and according to the return period associated with the
design EQGM for service (Tg). As indicated in Fig. 2, the values of T obtained for service and safety are
denoted as Tqgg and Tgap respectively, and once they have been established, TrAr is established in turn as
the smaller of the two. Before proceeding to the next step, it is necessary to check if the initially selected value
of v is consistent with the obtained value of Typag. If not, the value of y should be actualized and a new
iteration attempted.

In the example shown in Fig. 2, the value of Tipag is established according to displacement control
requirements; nevertheless, in some cases the critical value of T;pag may arise from the need to control also
the maximum velocity and/or total acceleration demands. In the latter cases, it is necessary to establish, besides
the displacement design spectra, the spectra for velocity and/or total acceleration. Similar needs arise in the case
that energy demands are relevant for the design of the building (e.g., buildings with passive energy dissipating
devices). A simple method to estimate these demands for safety can be established if, as suggested by
preliminary statistical analysis of the response of SDOF systems to synthetic and real EQGM, it is possible to
estimate the Ej, Eye and velocity demands in the equivalent SDOF from the values of Tjpag> Y(T1ar)> and
S4 sap- Further research needs to be carried to confirm this observation as well as to find a simple way to
estimate the total acceleration in the structure.

As will be discussed in detail later, once Typar and pgrar have been established, the designer may size the
frame members (design for stiffness) and estimate their longitudinal reinforcement (design for strength). It should
be noted that by carrving out the proposed preliminary analysis procedure, the designer may obtain a fair idea
of which are the limit states that control the design, such that early decisions can be made to optimize the design.
For example, if the stiffness required to control damage to the partitions of the building is too high, the designer
could decide to isolate the partitions from the structure or use other partitions less sensitive to structural
distortions; or to use special devices to reduce the displacements of the structure (e.g., energy-dissipating
devices). The explicit relationship between selected performance and design can improve the owner’s
understanding that the expected level of damage and economic losses after an EQ is directly related to his or
her initial investment. This can facilitate the communication between the designer and the owner, and the
recognition by the owner that an extra small amount of money invested in the initial construction can result in
significant savings during the life of the structure.

Note that recently proposed "displacement-based design methods” can be adapted to satisfy the requirements for
performance-based design and considered as a particular case of the comprehensive method presented here, in
which B = 0. In this case, damage is assumed to depend on maximum displacement and not on dissipated energy.
However, as was clearly shown by the Loma Prieta and Northridge EQs, a minimum strength (or maximum
ductility) is needed for most structures to control damage under moderate EQGMs. This minimum strength
depends on the hysteretic behavior and energy dissipation capacity of the structure, represented in the
comprehensive method given herein by the parameter f3.

(ii) Preliminary Sizing and Detailing. The preliminary sizing and detailing step may be stated as follows:
GIVEN: gravity, wind, snow and other possible loads or excitations; minimum stiffness and strength of an
equivalent SDOF system required to satisfy the selected seismic performance; critical load combinations; and
mechanical characteristics of the structural and nonstructural materials.

REQUIRED: Preliminary sizing and detailing of both the structural elements [beam and columns sizes and their
flexural reinforcement (in the case of moment-resisting space frames)], and the unintentional structural
(sometimes called nonstructural) components, which can affect the seismic response of the building.
SOLUTION: Select a first period, T, that is less than or equal to T{psg. Using T; and the selected first mode
shape, to obtain a preliminary sizing for stiffness. Based on these preliminary member sizes, select a minimum
equivalent SDOF strength using the service and safety strength design spectra according to the values of T; and
psTAR- Consider MDOF and torsional effects, as well as the expected overstrength, to obtain the seismic design
loads for service and safety limit states. Based on the application of linear optimization theory and plastic and
capacity design, design beams and columns in each story to minimize the volume of flexural reinforcement (in
the case of RC), using practical requirements and service forces and moments as constraints so that the
preliminary design simultaneously considers the demands for serviceability and safety.

Note that estimation of design forces, overstrength, and elastic moments to be used as constraints in the
optimization design are in fact part of the preliminary analysis rather than of the design step. However, since
they are intermediate steps between preliminary sizing for stiffness and preliminary sizing and detailing for



strength, they are included in the preliminary design of sizes and reinforcement for the sake of simplicity in the
discussion.

(iii) Acceptability Checks. An acceptability check is performed to verify that the selected performance objectives
are met. The structural response as measured by certain quantifiable parameters must be consistent with the
performance objectives and associated acceptability criteria. The acceptability criteria consist of limiting values
in structural response parameters, associated with selected performance levels or damage levels for specified
levels of EQGM. In a particular building, the design of specific components may be controlled by the same or
different response parameters for the same or different performance objectives. Typical response parameters may
include: stress ratios, deformation and interstory drift ratios, structural accelerations, ductility demand ratios,
damage index, and energy dissipation demand vs. capacity.

Typical limiting values for these response parameters must be established for each performance level through
research, including laboratory testing of specific components and calibrating the limiting values by analyzing
buildings whose EQGMs and responses, and therefore damages, have been measured (recorded) in past EQs.
Then, in a specific design, the appropriate parameters must be checked at the governing performance levels.
Typically, the design should at least be checked at the fully operational level and at the life-safety level, after
both the preliminary and the final design. In many cases, nonstructural components can be pre-qualified by being
prescriptively designed to meet the target parameters of the structural design. Acceptability checks will involve
both elastic and inelastic analysis methods. Elastic analysis procedures for checking stress ratios and drift are
currently well known and widely used. Several simplified nonlinear inelastic procedures, such as those based
on the use of pushover analysis, are also proposed.

CONCLUSIONS

The general comprehensive performance-based EQ-RD approach has been applied successfully to the design of
a RC building similar to an existing 30-story building (Bertero et al., 1992) and to a ten-story RC building. The
main advantage of the proposed comprehensive performance-based general EQ-RD is that, notwithstanding great
uncertainties in the numerical quantification of some of the concepts involved, this quantification can be
improved without changing the format of the codified methodology as new and more reliable data are acquired.
The relationships between E| and other relevant seismic demands are usually stable and can be expressed in a
simple manner. The use of these relationships simultaneously with performance indices or functions makes it
possible to establish a rational and simple EQ-RD procedure that accounts for performance considerations. One
such method, which conciliates the analysis and design phases of the overall EQ-RD procedure, is based on
energy concepts. This method provides a simple way to estimate the relevant seismic demands in a building
while allowing the designer to be an active part of the overall EQ-RD procedure. Nevertheless, at this stage there
is still a considerable amount of experimental, field and analytical research that needs to be carried out to create
a solid basis on which the proposed method can be properly implemented in practice.
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