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ABSTRACT

In this paper, a new way to reduce the eigenvalue computation in structural analysis is presented. The degrees of
freedom of a structure may be classified into groups. The groups are termed as sub-degrees of freedom. The
coupling stiffnesses between sub-degrees of freedom are selected small. The eigensolution from the computation
for each sub-degrees of freedom is an approximation and a little computing time is required. As the weak coupling
is considered to be a perturbation from sub-degrees of freedom to full degrees of freedom, the eigensolution is
served as the zeroth-order result and the perturbation algorithm is used to obtain an accurate result. The
application to a truss is shown and the numerical result is discussed. The accuracy of perturbation depends on the
coupling between sub-degrees of freedom. The better result comes from the weaker coupling. The suggested
procedure can be used to simplify a problem of three dimensions to that of two dimensions or from two
dimensions to one diminution. It is efficient to determine the dynamic behavior. The method is able to be extended
to analyze a structure under the seismic loading.
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INTRODUCTION

The finite element method is widely used in the structural analysis nowadays. The degrees of freedom are chosen
as variables to discretize the structure and hence the structure is analyzed. The accurate result is relied on the
number of degrees of freedom. The more number of degrees of freedom is, the more accurate structural behavior
is obtained. It is common that hundreds or thousands of degrees of freedom are used for the analysis of a structure.
However, because the capacity of a computer and the efficiency of analysis, to reduce the number of degrees of
freedom is desired. This is even more important for a structure to be analyzed under the earthquake loading.

Usually, the earthquake or dynamic analysis focuses on the eigenvalue problem to obtain the dynamic behavior of
the structure and the mode shapes. The lower dynamic modes are excited under an earthquake and that are mostly
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concerned. It has been known that the eigenvalue computation takes much computing time. The various ways
have been developed to reduce the computation. To reduce the size of stiffness matrix with fewer degrees of
freedom is the most used way of reduction.

Substructuring is a normal technique to reduce the structural analysis (Bathe and Wilson, 1976). The structure is
partitioned into substructures and into even multi-level substructures. The output degrees of freedom from a
substructure are formed in the connectors between substructures and the rest of degrees of freedom are
condensed. By this way, the number of degrees of freedom are reduced and the structural matrix becomes much
small. The modal synthesis of substructures is used to reduce eigenvalue analysis (Hurty, 1965; Bathe and Wilson,
1976; Craig, 1977). The eigensolution of the structure is obtained from the dynamic modes of substructures, which
may be from the eigenvalue computation or the modal testing for each substructure. For an accurate eigensolution,
the weak connectors between the substructures must be found. However in many cases, it is rather difficult to find
the weak connectors and the structure is unable to be partitioned into substructures.

The structural degrees of freedom may be classified into groups, for example, the degrees of freedom in any one of
two horizontal directions for a frame structure. The group of degrees of freedom may be termed as sub-degrees of
freedom. The weak coupling between the groups can be found. The weak coupling leads to the small structural
stiffnesses and masses in sub-matrices. The structural matrix and mass matrix are divided into two or more parts
related to sub-degrees of freedom, in which sub-matrices of the weak coupling are not considered. The structural
analysis is carried on the each of sub-degrees of freedom.

The perturbation method is an approximate way to obtain the solution in the form of an asymptotic expansion
from the zeroth-order result. It is useful for the structural analysis with small changes of properties and for the
modal sensitive analysis. The reduction by the perturbation method has been studied. The perturbation method is
used for substructuring of structures with weak connectors (Chen and Liu, 1993). A reduction algorithm is applied
to the structures with large stiffnesses and small masses (Liu, 1995; Liu, 1996).

In this paper, a new perturbation way to reduce the eigenvalue computation in structural dynamics is presented.
The term of sub-dof, sub-degrees of freedom, is introduced. The perturbation algorithm is employed to obtain an
accurate eigensolution.

For a structure is partitioned into sub-dofs, the eigenvalue analysis is reduced to the separate computation for each
sub-dof. The computing time takes only a small portion of the each computation and the total time is much shorter
than that for the computation with full degrees of freedom. The eigensolution obtained is an approximation due to
the small influence caused by the weak coupling. Taking the eigensolution to be the zeroth-order result, the
perturbation procedure can be used to obtain an accurate result. Because the weak coupling matrices between
sub-dofs, the problem of full degrees of freedom is only a perturbation upon the zeroth-order result. The perturbed
result is assumed to be a sequence of small parameter and is convergent with the increase of the order of
perturbation. Using the standard perturbation procedure, the simple algorithm is given in the paper. The perturbed
eigenvector is obtained from the first-order or higher-order perturbation, while the perturbed eigenvalue is
obtained from the second-order perturbation.

The application of the method is shown in the numerical example, a plane truss with 5 bars. Two sub-dofs are
considered for the respective directions. The perturbed result is obtained from the second-order perturbation. The
relative errors with the increase of the coupling between sub-dofs are examined.

SUB-DEGREES OF FREEDOM

For the structural dynamics, the eigenvalue equation with the symmetrical stiffness matrix K and mass matrix M is
given by

(K-AM)u =0 (1)



where A and u are eigenvalue and eigenvector respectively. The structure is discretized into N degrees of freedom
through the finite element method.

Suppose eigenvector u may be classified into two or even more groups. The degrees of freedom for the groups
could be termed as sub-degrees of freedom, i.e. sub-dof. Hence equation (1) is rewritten to
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where a and b denote two sub-dofs.

For each of two sub-dofs a and b, an eigenvalue problem is set up and is solved separately. Therefore, yields the
eigenvalue equations

(Ku - A Mn) W= 0 (3)
(Kbo - Ao Mpp)up =0 “)

Computation of the equations yields the eigensolution, which may be considered to be from equation (1) or
equation (2) without the coupling matrices between two sub-dofs a and b. As the numbers of degrees of freedom
in equation (3) and equation (4) are less than that for equation (2), the matrices K,,, Ki, M, and My, become
much small and only little computing time is required for the eigenvalue computation. Eventually, the whole
computing time is reduced greatly.

The similar reduction technique has widely used in the structural analysis. In most cases, to analyze a complex
structure in three dimensions is not applicable. Only a section of the structure is considered and it is simplified into
a plane structure of two dimensions. The third coordinate of the structure is neglected. By this way, the structure is
analyzed and the computational result is obtained. The plane frame is a usual analytical model for the frame
structure. Each frame in any one of two horizontal directions is separately computed. However, this is only a
simple way and the error may be very big. The eigensolution obtained is only for the lateral and vertical vectors.
The torsional mode is excluded and it can be very important in the structural dynamics. This makes the result lacks
the character of three dimensions.

If the coupling between the sub-dofs is weak, the stiffnesses and masses in matrices Ku, Kia, My and M, are
small. Therefore, the eigensolutions obtained from the computation of each sub-dof are possible to be an
approximation. However, to achieve a better result, the new method needs to be developed.

PERTURBATION EQUATIONS

If sub-dofs have been carefully selected, the coupling stiffness and mass matrices between sub-dofs, i.e. Ka, Kea,
M,; and M. in equation (2), are in the small order compared to the diagonal matrices K., Ki, Mas and My,. These
matrices may be expressed in first-order according to the perturbation theory to
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€ is a small positive parameter, that is 0<€<<1. Then, the structural stiffness and mass matrices become
K=K®+eK® @)
M =M +eM® ®)

where superscript (0) denotes the zeroth-order. The zeroth-order stiffness matrix K and the zeroth-order mass
matrix M® are given by
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Considering the zeroth-order eigenvalue problem from equation (1) for the perturbed problem, the eigenvalue
equation is

(K®-29M®)u® =0 ®

This is just the eigenvalue equations (3) and (4) for sub-dofs a and b. So the solution is formed from the results of
equations (3) and (4)

A%= (A ) (10)
u(°)=[':; :] (11)

which are Nxn matrices, and n is the number of eigenvalues. Suppose the numbers of eigenvalues obtained from
equation (3) and equation (4) are n, and n, for two sub-dofs a and b respectively, then

n=n,+m (12)
n may be smaller than the number of degrees of freedom N.

According the perturbation theory, the eigensolution of equation (1) is assumed to take an asymptotic sequence of
the small parameter €
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wherei=1, .., n.
Based on the zeroth-order result, the solution of equations (13) and (14) is obtained through the standard

perturbation procedure. The simple formulas are as follows
the first-order perturbation
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Note that the first-order perturbation of eigenvalue is unable to be obtained. Though only the first-order
perturbation and the second-order perturbation are given, the perturbation may be further computed in the straight
forward way. However, the first two order perturbations are usually enough for a good perturbed result and the
higher order perturbation is not needed. The equations are for two sub-dofs, while for more sub-dofs the
computation is the same.

As sub-dofs are considered to make the stiffness matrix into small ones and the zeroth-order result is from the
computation for sub-dofs, the computing time is shortened. It is demonstrated that the computing time for the
perturbation takes only very small part (Liu, 1996). Consequently, the whole time can be reduced.

NUMERICAL EXAMPLE

For a plane structure, the degrees of freedom are considered in two directions of coordinates. There are degrees of
freedom in direction X and Y for a plane truss. For a plane frame, additional rotational degrees of freedom are
considered. Assume x and y are the eigenvectors in X and Y coordinates and may be taken to be two sub-dofs
respectively, that is

U, =X
w=Yy
Fig. 1 shows a 5-elements plane truss. The eigenvector is u={ w, u, } ' ={ X1 X2 ¥1¥2 }"
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Fig. 1. A plane truss with 5 bars and 4 degrees of freedom

The sectional stiffnesses of bars and the nodal masses are given by
ki=k:=15 k;=10;, k(=ks=05.

mi = mz = 1.0
Thus, yields the stiffness matrix and the mass matrix

1.176777 -1.000000 -0.176777 0.000000
_|-1.000000 1.176777 0.000000 0.176777
" 1-0.176777 0.000000 1.676777 0.000000

0.000000 0.176777 0.000000 1.676777

M = diag[1.0 1.0 1.0 1.0 ]

The zeroth-order stiffness and mass matrices are taken as
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1.176777 -1.000000
-1.000000 1.176777
0.000000 0.000000
0.000000 0.000000

0.000000
0.000000
1.676777
0.000000

M® = diag[ 1.0 1.0 1.0 1.0 ]

then the first-order matrices are

W _ 0 K -
eK Tk, o | [-0176777

Because the lumped nodal mass matrix is used, there is no coupling between sub-dofs. Therefore, the first-order

mass matrix is the zero matrix.

The eigensolutions are compared in Table 1. The exact, zeroth-order and perturbed eigenvalues and eigenvectors
are given. The relative errors in percentage for the zeroth-order eigenvalues and the perturbed eigenvalues are
computed. The perturbed eigenvalues are in the good agreement with the exact result. The errors become smaller
with the increase of dynamic modes. The big change is found in the first mode, with the relative error from

13.1554% to -0.1805%.
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Table 1. Comparison of exact, zeroth-order and perturbed eigensolutions

Mode exact zeroth perturbed
Eigenvalue 0.156225 0.176777 0.155943

error % 13.1554 -0.1805
1 0.702376 0.707107 0.702196
Eigenvector 0.702376 0.707107 0.702196
0.081657 0.000000 0.083333
0.081660 0.000000 0.083333
Eigenvalue 1.620591 1.676777 1.614277

error % 3.4670 -0.3896
2 0.214186 0.000000 0.250000
Eigenvector 0.214186 0.000000 0.250000
0.673887 0.707107 0.662913
0.673888 0.707107 0.662913
Eigenvalue 1.697329 1.676777 1.697610

error % -1.2108 0.0166
3 0.081656 0.000000 0.083333
Eigenvector 0.081658 0.000000 0.083333
0.702376 0.707107 0.702196
0.702376 0.707107 0.702196
Eigenvalue 2.232963 2.176777 2.239277

error % -2.5162 0.2828
4 0.673887 0.707107 0.662913
Eigenvector 0.673887 0.707107 0.662913
0.214186 0.000000 0.250000
0.214186 0.000000 0.250000




It is noted that the coupling matrices K., and K, depend on the sectional stiffnesses k4 and ks of bar 4 and 5. To
compare the eigensolution with the change of the coupling between sub-dofs, the sectional stiffnesses k4 and ks are
considered to be a variable and take changes from 0.1 to 1.0. The different eigensolutions are obtained. The
relative errors of the perturbed eigenvalue for the first dynamic mode together with the relative errors of the
zeroth-order eigenvalue are plotted in Fig 2.
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Fig. 2. Relative error of the perturbed eigenvalue for the first dynamic mode
vs. sectional stiffness of bar 4 and 5.

From Fig. 2, it is noticed that the relative errors for the eigenvalue of first mode increase with changes of the
sectional stiffnesses k, and ks from 0.1 to 1.0. The relative error for the perturbed eigenvalue goes from -0.0008%
to -1.5222%, although it is from 2.4131% to 28.8473% for the zeroth-order. The perturbed eigenvalue is smaller
than the exact one, while the zeroth-order result is larger. The error is so small that result of the perturbed
eigenvalue becomes acceptable.

CONCLUSION

The sub-dof is introduced in the paper and is used to divided the stiffness matrix as well as the mass matrix into
several parts. The eigenvalue computation is performed with the reduced number of degrees of freedom. The
perturbation algorithm is useful to obtain the eigensolution with the full degrees of freedom. Therefore, the
computing time is reduced. The method is effective in the reduction and is a new way for the efficient computation
of eigenvalue problem in the structural analysis.

The numerical example of a simple plane truss shows the effectiveness of the method. The eigensolution obtained
from the second-order perturbation is greatly improved from the result for sub-dofs and is in the good agreement
with the result for full dof. The error depends on the coupling matrices of structural stiffness and mass between
sub-dofs. The weaker coupling yields the better perturbed result. Therefore, the sub-dofs, between which the weak
coupling stiffness matrices are found, are preferable to be selected.

A structure of three dimensions may be divided into sub-dofs with two dimensions and hence is analyzed.
However, the torsional dynamic mode must be obtained from the perturbation, as the result of sub-dofs is only for



the lateral and vertical modes. If the earthquake loading is considered, the idea of sub-dof may be extended to
obtain the structural behavior.
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