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ABSTRACT

In this paper, by means of the shear wedge analysis, an elastic model is developed for evaluating the
dynamic characteristics, namely natural frequencies and modes of transversal vibration of inhomoge-
neous earth dams in triangular canyons, where the inhomogeneity of the dam materials is taken into
account by assuming a specific variation of the stiffness properties along the depth. By the use of the
method of separation of variables and Bubnov-Galerkin approach, an approximate eigenvalue solution is
given for the fundamental natural frequency of transversal vibration of the dams, and some calculation
formulas for transversal earthquake response of the dams are obtaired. At the end, a computed exam-

ple is presented.
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INTRODUCTION

In the majority of earth dams shaken by severe earthquakes, two primary types of damage have oc-
curred (Ambraseys, 1960): longitudinal cracks at the top of the dams and transversal cracks some-
times accompanied by crest settlement. The longitudinal cracks appear to have been caused primarily
by the horizonta. component of the earthquake motion in the upstream-downstream direction, that is,
the direction perpendicular to the axis of a dam. In contrast, transversal cracks of an earth dam can re-
sult from longitudinal dynamic strains induced by earthquake motion in the longitudinal direction (Seed

et al. » 1978). A rigorous analytical solution has been developed for the transversal linear shear vibra-



tion of inhomogeneous earth dams in rectangular canyons (Oner, 1984), and other two rigorous ana-
lytical solutions have been presented for the lateral linear shear response of homogeneous embankment
dams in semi-cylindrical canyons (Dakoulas and Gazetas, 1986) aad in semi-elliptical canyons (Dak-
oulas and Hsu, 1993) respectively. This paper develops an approximate method for evaluating the

transversal earthquake response of inhomogeneous earth dams in triangular canyons.

DIFFERENTIAL EQUATION OF TRANSVERSAL VIBRATION

In view of the fact that earth dams are large three dimensional structures constructed from inelastic and
inhomogeneous materials, the determination of their dynamic characteristics such as the natural fre-
quencies and modes of vibration is extremely difficult. As a result, the following simplifying assump-
tions are made in order to derive the governing equation of earthquake motion: (1) The dam is repre-
sented by an elastic wedge with symmetrical triangular section in a rigid symmetrical triangular canyon
(see Fig. 1). (2) The dam is modelled by a non-uniform elastic material that has uniform mass densi-
ty and variable stiffness along the depth. The continuous variation of soil stiffness may be represented
by a simplified function relationship, which the shear modulus increases as the (1/m)th power of the

depth (Abdel-Ghaffar et al. , 1981);
1/m
G(y) = o) D

where G, is the shear modulus of the dam material at the base, H the height of the dam and 1/m is con-
stant (I/m = 0, 1/3, 2/5, 1/2 or 1 etc. ). (3) The dam materials are linearly elastic. (4) The direc-
tion of ground motion is horizontal and perpendicular to the dam axis. (5) The interaction between the

dam and the water in reservoir is negligible.
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Fig. 1. Analytical model of earth dam in trizngular conyon

for shear wedge analysis



Figure 1 shows a dam, an axial slice of the dam, a maximum longitudinal section and a maximum
transversal section. Forces acting on an element in the x-direction, as shown in Fig. 1 (b), are

(1) Inertial force:
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(2) Shear force on horizontal face
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(3) Shear force on vertical face:
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where t is time, p the density of the dam material, B the maximum width at the base, u(y,z;t), t,,
and T, are the vibrational displacements and the shear stresses on horizontal and vertical face at depth y

in the x-direction respectively.

For the equilibrium of an element I:Fig. 1 (b)], the following equation is obtained

a a
F, = a—y(Syx)dy + E(Szx)dz (2)
Substituting the forces into eq. (2), the equation of motion governing free lateral vibration of the dam
is obtained :
2
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where vg,= (G(/p)'/? is the shear wave velocity at the base of dam material.
The boundary conditions are
u=290 at y=H 4+ Kz
du
— =20 at =0 i
ey Y 1)
du
> = 0 at z=20

where K=2H/L, and L is the length of the dam crest.

SOLUTION FOR FIRST NATURAL FREQUENCY

By the method of separation of variables [u(y,z;t) =®(y,z)T (t)], the following equations are ob-

tained for the time and space variables ;

T + T = 0 (5)
1,90 1PD L FD  oPHV
(1+ ) ay+y 7yz-i-y = 1 Vgodb—o (6)
where o is the ratural frequency. The solution of eq. (5) is
T (t) = A coswt + A,sinwt P!

in which A, and A, are arbitrary constants.



Since the boundary conditions given by eq. (4) must be satisfied at all times, the following boundary

conditions can be imposed on the function ®(y,z):

O =0 at y=H + Kz

oD

a 0 at y=10 (8)
oD

51——0 at z=20

The closed form solution of eq. (6) is difficult to be obtained. However, an approximate eigenvalue
solution of eq. (6) can easily be obtained, which is a rather accurate value for the first natural frequen-

cy of vibration of the dam system.

According to the Bubnov-Galerkin method, if a function ®(y,z) which satisfies the boundary condi-

tions given by eq. (8) can be found, the following integral
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yields an algebraic equation from which the frequency of the systern can be determined.

It can easily be proved that the following function
1 X
Dd(y,z) = }—I;(y +H +Kz2)(y +H — Kz)(y —H + Kz)(y - H — Kz2) (10)

can satisfy eq. (8). Substituting eq. (10) into eq. (9) and performing the integration, the following
algebraic equation about the natural frequency is obtained:
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Solving eq. (11), the formula for the natural frequency of transversal vibration of earth dam in trian-

gular canyon is given:
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The frequency given by eq. (12) is the first natural frequency w;, and the function by eq. (10) is cor-
responded to the first mode shape @;.

TRANSVERSAL EARTHQUAKE RESPONSE OF DAM

It is easily proved that the equation governing transversal vibration of the dam with damping under
earthquake can be written as:
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where iig (t) is the acceleration of canyon in the x-direction and c is the coefficient of damping.

By the method of separation of variables and based on the orthogonality of mode shape, the following

two equations for the first mode shape are obtained:

T, + 2o, T, + (012T| = Thﬁg(t) (14)
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where w, is the first natural frequency given by eq. (12), \, is the damping ratio of first mode, A, =c/

2pw; » and n, is the mode participation coefficient;
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After substituting the @, from eq. (10) into eq. (16) and performing the integeration, n,=1. 856 is

(16)

obtained. Thus. the solution of eq. (14) is obtained:

'-.
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where o, =w;4/ 1—\,%, the Duhamal integeral in eq. (17) may be calculated by numerical integeration

method.

Because the higher modes have little effect on earthquake response of the dam, only a few lower modes
(1~3 orders) are adopted for practical requirement. So the transversal earthquake response of the dam
in triangular cariyon can be approximately written as follows:

ux~oT,, u~oT, uxdT,, 1,~GP,T,, 1,2G0P,T, (18)
where ®,, ®,, and ®,, can be determined by eq. (11) and its derivatives, T, T, and T, can be ob-

tained by eq. (.7) and its derivtives.

In engineering it is most interesting in the maximum response of the dam, so the following formulas of
maximum response are useful for earthquake-resistant design of the earth dam:
Unax == | D[Sy Upax & [P S, Uy & [ 1Dy [S,s

Tpomax = G M@y [Sqs Toxmax = G M@y, Sy (19)

where Sy, S, and S, are displacement response spectrum, velocity response spectrum and acceleration

response spectrum respectively.

For most earthquake motions, there is not obvious difference between the quasi-velocity response spec-
trum S,. and velocity response spectrum S,. So it is acceptable that the two response spectra are equal,
then we get

Sy = S,y = w—l'lsa = S, 20)

Therefore, the sarthquake response computation of earth dam may be performed only by use of the ve-

locity response spectrum of earthquake motion. For example, figure 2 shows the velocity response



spectrum of the NE80° component of earthquake motion in Olympia, Washington, America, in April
13, 19149 (Housner, 1959).
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Fig. 2. The velocity response spectrum of the NE80° component of
earthquake motion in Olympia, Washington, America,
in April 13, 1949 (Housner, 1959).

COMPUTED EXAMPLE

Suppose a symmetrical earth dam in a symmetrical triangular canyon is subjected to a transversal earth-
quake motion (Qlympia, Washington, April 13, 1949). The lenzth of the dam crest is L =200 m,
and the maximum height of the dam is H=50 m. The property of the dam material are p=2000 kg/
m®, G,=80 MPa and », =0. 05. Determine the various maximuimn response on the centrial and L/4

sections of the dam.

Substituting the aforesaid known parameters into eq. (12), the first natural frequency w, and first nat-
ural period Tp, are obtained. Then, according to Tp; and A, the maximum response spectra can be de-
termined from the response spectrum curves (shown in Fig. 2), and substituting these response spec-
tra (Sq» Svand S,) and the shear modulus G into eq. (19), the maximum response by the earthquake
are obtained. For the different (1/m)th powers, the different values of the first natural frequency w ,
first natural period Tp;» displacement response spectrum Sy, velocity response spectrum S., accelera-
tion response spectrum S,, and the maximum value of the crest displacement Umaxs Crest velocity Umas s
crest acceleration umas and crest shear stresses on horizontal face Tyx.max @aNd on vertical face v, ma are
shown in Table 1, where (I) is corresponded to the central section and (2 to the L/4 section. The

maximum response on central and L/4 sections for three (I/m)th powers (I/m = 0, 1/3, 1/2) are

shown in Fig. 3.



Table 1 The maximum value of maximum response on central and L/4 sections
for five different (1/m)th powers (I/m=0, 1/3, 2/5, 1/2, 1)

s @ Tor S S. S. Unax Urmax Umsx  Tyxomax Tocoma
m rad/s  (s) (em) (ecm/s)  (cm/s?) (cm) (em/s)  (em/s?)  (kPa)  (kPa)
0 1414 0.44  3.80 53. 8 760.8 (D 7.06 99.9  1112.3 173.5 0.0

® 3.97 56. 2 794.4  226.0 113.0

0 11.38 0.55  41.80 54.6 621.5 (D 8.90 101.4  1153.6 184.6 0.0
3 ® 5.01 57.0 548.9  226.2  113.1
2 10.95 0.57  5.28 57.8 632.9 (@ 9.80 107.3  1174.8  196.3 0.0
5 ® 5.51 60. 4 560.8 237.6 118.8
1 10.35 0.61  6.10 63.2 651.3  (DI1.33 117.3  1214.6  216.6 0.0
2 @ 6.37 66. 0 683.2  256.4  128.2
| 8.08 0.78  5.61 15.3 365.9  (D10. 41 84. 1 679.2  166.5 0.0

@ 5. 86 47.3 382.0 166.6  83.3
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Fig. 3. The maximum response on central and L/4 sections for
three different (1/m)th powers (I/m == 0, 1/3, 1/2)



CONCLUSION

The approximate analytical formulas developed in this paper are simple and they can be used for the
analysis of transversal vibration of inhomogeneous earth dams in triangular conyons under earthquake
motion, by use of corresponding simplified method, such as response spectrum technique. The detailed
example has shcwn that the analytical model presented here will provide information of practical as well

as academic sigrificance.
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