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ABSTRACT

This paper analyzes the feasibility and efficiency of active and passive control systems for the vibration
control of structures subjected to multiple support excitation. This type of external excitation represents the
earthquake-induced spatially varying ground motion and it is extremely important for horizontally extended
structures. The structural response is decomposed into a dynamic component and a quasi-static component.
Both active (tendons) and passive (base isolation) vibration control systems have been analyzed. While the
active tendon control system is quite effective in reducing the dynamic response, the quasi-static component
of the structural response can be controlled by such a system only in particular structural conditions. The
importance of the quasi-static component of the response is also confirmed in base isolated systems, which,
however, seem to be more effective in reducing the shear and bending moments in the vertical supports.
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INTRODUCTION

The theory of vibration control for structures subjected to earthquake excitation is usually presented by
assuming uniform ground support motion at the structure’s foundations (e.g. Soong (1990)). Such an
assumption is acceptable for structures whose base dimensions are "limited” so that the soil properties and
the effects of the source magnitude and arrival time of seismic waves can be considered identical at all the
supporting points. However, for horizontally extended structures, such as pipelines, long-span bridges,
elevated highways and railways, or for extended structures with greatly varying soil conditions at the
supports, the effects of the spatial variability of the earthquake induced ground motion on the structural
response become extremely important, as proven by the vast structural damage produced in this type of
structures during recent earthquakes (i.e. Northridge (1994), Hyogo-Ken Nanbu (1995)). The importance of
multiple support excitation on the response of horizontally extended structures has been emphasized in
previous studies (Mindlin and Goodman (1950)) and recent studies have confirmed the urgent need to include
the effects associated with the spatial variability of the ground motion in regular engineering practice (Der
Kiureghian and Neuenhofer (1993)). However, little has been done to incorporate the effects of the multiple
support excitation in the vibration control theory of structures. Many research investigations had focused
their attention on the analysis of control systems for building-type structures (e.g. Yang et al. (1988)) which
had proven active tendon systems and active tuned mass dampers effective in reducing the response of such
structures to strong external excitations. Recently, researchers have extended their analyses to include control



mechanisms for horizontally extended structures such as bridges (Feng and Shinozuka (1990), Fujino et al.
(1994), Xu et al. (1994), Betti and Panariello (1995)). In these studies, different control techniques (tuned
mass dampers, aerodynamic appendages, active tendons) were used to reduce the vibrations of the bridge
superstructure subjected to earthquake and wind excitation. However, only few of these studies (Xu et al.
(1994), Betti and Panariello (1995)) have included the spatial variability of the ground motion in their control
analysis.

In this paper, a comparison between different vibration control systems suitable for structures subjected to
spatially varying ground motion is presented. Both active control and passive control strategies are examined
using simple structural models with multiple support excitation. Advantages and disadvantages of both types
of control strategies are outlined.

MULTIPLE SUPPORT EXCITATION

To highlight the effects of the multiple support excitation, let’s consider a single-degree-of-freedom (SDOF)
system with two supports (Fig.1). The mass of the system, m, is supported by two columns, with bending
stiffness k, and k,, respectively, while the damping of the system is provided by two dash-pots with damping
constants ¢, and ¢,. The external excitation is represented by the time histories of the ground displacements
(x I(t) and xgz(st) ) and of the ground velocities ( X 1(t) and x 2(t) ) at the two supports. The
equation of motion of the SDOF subjected to two different input groundg motions can then be written as:

my=-k (y-x )k (y-x )-c,(y-% )-c,(y-X ) (1)

where  y(f) represents the total displacement of the structural mass with respect to a fixed system of
reference. By comparing eq. (1) with the classical equation of motion for an SDOF with uniform input
excitation, the fundamental difference between the two formulations is that now the equation of motion is
expressed in terms of the total displacements rather than in terms of relative displacements. This factor
makes these multiple support systems unique and particular care has to be placed in order to effectively
control their vibrations. A common procedure for solving eq. (1) is to decompose the displacements  y(#)
into 1) a quasi-static component y (#) , which includes in the analysis the different excitation at the
supports and 2) a dynamic componcnqt’ y. (#) , which is associated with the inertial forces for the case of
the fixed base conditions. This structural fesponse decomposition will be assumed for both the active and
passive formulations.

ACTIVE CONTROL STRATEGY
Among the various active control strategies, the one that presents the most effective results is the so-called

active tendon control system with two independent actuators (Fig. 1b). In this case, the equation of motion
for a SDOF with active tendon control forces becomes:

my=-kO-x )-k0-x)- €0%)-¢,0-%)+,*, 2)

where fu . (® and f _(¢) are the control forces associated with the first and second actuator, respectively.
As a consequence of the structural response decomposition into a dynamic and a quasi-static component, also
the control force of each actuator can be decomposed into two components:
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where J *(® is the control force necessary to control the quasi-static components of the structural response
and fld '(t) the control force associated with the dynamic component of the structural response. For the

quasi-static component of the control force, we assume that it is proportional to the relative displacements
of the mass with respect to the corresponding support. This yields:
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where o is the tendons inclination while glq" and g¥ are two proportionality constants that have
to be determined. By substituting these expressions for the control forces into the equation motion, the
quasi-static component of the structural response can be obtained by static condensation of eq. (2):
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The constants glq' and g:" can be determined by looking at both the structural characteristics and the
control strategies. For symmetric structures, the quasi-static response is independent by the values of glq’
and gz"" and eq. (5) becomes:
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while for non-symmetric structures the quasi-static response depends on the selected control strategy. In this
study, two control techniques have been selected for the case of non-symmetric structures: 1) minimum strain
energy associated with the quasi-static configuration and 2) equal relative displacements between the top
and the bottom of the two columns.

Once the control constants have been determined and the quasi-static response has been computed, it is
possible to obtain an expression of the equation of motion (eq. (2)) in terms of the dynamic component of
the structural response and of the control force. For either symmetric structures or non-symmetric structures
which satisfy the control strategy of equal differential displacements at the supports, the equation of motion
becomes:
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while for non-symmetric structures with the condition of minimal quasi-static strain energy, it becomes:
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where c¢=(c. +c¢) and k=(k +k) indicate the total structural damping and stiffness, respectively. Eq.
(7) and eq. (18) %\re similar to thezclassical equation of motion of an SDOf subjected to uniform ground
excitation. The only difference is that here the ground excitation is represented by a "weighted average” of
the ground accelerations at the two supports. The control forces in eq. (7) and (%) are provided by the two
sets of pretensioned tendons whose constants can be obtained using any available control strategy. In this
study, an instantaneous optimal closed-open loop control has been used (Yang et al. 1987).



BASE ISOLATION STRATEGY

To seismically isolate a single-degree-of-freedom system with two supporting columns, it is necessary to
introduce a base mass between each column and its respective isolator. The base mass provides a suitable
surface to which the isolator is attached and acts as the column foundation. The SDOF system is thus
transformed into a three-degree-of-freedom system.

Consider the previously analyzed SDOF system as shown in Figure Ic. Each column is attached to a base
mass, m,, which is fixed atop the isolator. The isolator is represented by a Kelvin body, composed of a shear
spring, with lateral stiffness k, , and a dashpot with damping constant ¢, , in parallel. The equations of
motion for this system can be written as:
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where y(t), ¥,,(t), yp.(t) represent the displacement of the structural mass, the first base mass, and the second
base mass respectively, measured with respect to the original, undeformed configuration. As before, each
total displacement mentioned above can be decomposed into a dynamic component, e.g. y®(t), and a quasi-
static component, e.g. y¥(t), whose expressions can be obtained from static condensation of eq. (9):
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It can be seen that when the isolator stiffness is small, the displacement of the mass is the average of the
ground displacements. When the isolator stiffness is large, the base mass’s displacement equals the ground
displacement below it.

Substituting egs. (9) into egs. (10), the equations of motion can now be rewritten in terms of the dynamic
components of the structural response:
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which represent three coupled equations in yd’(t) b (t) and Y, (t) To obtain the solution of egs. (11),
(12) and (13), it is convenient to use modal analysis, cons1denng the generalized eigenproblem associated
with the free undamped structural vibrations. The solution to the characteristic polynomial are real, distinct
eigenvalues which may be obtained analytically. If the stiffnesses, k, and k, , of the supporting columns
have the same value, then the eigenvalues can be readily calculated, with the common column stiffeness
denoted by k = k, =k,, as:
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and the correspondent eigenvectors are expressed as:
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Though the constants & and P can be determined analytically, it is simpler to approximate them by first
utilizing the binomial theorem and then expanding them as a Taylor series in terms of the stiffness ratio kyk,
where only those of first order are retained (Kelly (1993)). This yields:
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Once the parameters & and P have been obtained, classical modal superposition analysis will allow us to
obtain the generalized coordinates associated with the determination of the dynamic component of the

structural response.

NUMERICAL EXAMPLES

To validate the assumptions considered in this study, different SDOF systems have been analyzed. The
structural properties are: m = mass = 800 tons, total elastic stiffness = (kl +k2) = 5 x10* KN/m, damping
coefficient £ = 0.02 (2% damping) and an undamped natural frequency of 1.258 Hz. For the active tendon
system, two sets of cables with stiffness k” = 10° KN/m and inclined of an angle aequal to 36° have been
used. For the elastomeric isolators, the damping coefficient Eb = 0.15 (15 % damping) has been selected,
as the range of critical damping factor for elastomeric isolators is between 10 and 20 % (Kelly (1993)). The
mass ratio m,/m used in this study has been chosen equal to 0.25 while the isolator horizontal stiffness has
been selected equal to 2870 KN/m, based on a compact isolator design chart (Kelly (1993)). The earthquake
excitation is represented by the acceleration and displacement records 4S50W and 7S50W from the 1979 El
Centro earthquake.

For the case of active tendon systems, figs (2) and (3) show the capability of this type of control systems
in reducing the dynamic component of the structural response (from 13.93 cm for the uncontrolled case to
1.33 ¢m for the controlled case). In addition, figs (2) and (3) clearly indicate the importance of the non-
uniform excitation in determining the relative displacements between the end-sections of the vertical columns
and the inefficiency of such control systems in controlling the quasi-static component of the response. In
fact, while the dynamic component of the response is almost reduced to zero by the action of the control
forces, the quasi-static component of the structural response can be altered only in the case of non-symmetric
structures where the criterion of equal quasi-static displacements has been considered. Other active control
systems, such as Active Tuned Mass Dampers, present identical limitations in the vibration control of such
extended structures: they are quite effective with the dynamic component of the response but they fail in
reducing the quasi-static contribution to the structural response.

Base isolated systems seem to be much more effective in reducing the relative displacements between the
end-sections of the vertical supports. In fact, while the inclusion of the two base isolators does not affect
the absolute displacements of the structural mass, the relative displacements between the mass and the
isolators are drastically reduced (fig 4). This follows by the fact that a rigid body displacement occurs which
limits the amplitude of the relative displacements. This result is confirmed with the predominant mode of
the dynamic response being the fundamental mode, whose frequency is 0.34 Hz. Figure (4) shows the total
relative displacements between the two end-section of a vertical support and clearly indicates how the
presence of base isolators reduces the amplitude of these differential displacements.
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