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ABSTRACT

Earth dams in narrow canyons are complicated from many aspects, such as 3— D effect, non-linear
material properties, and seismic pore water pressure generation. Rigorous analysis of their seismic re-
sponse is a formidable task. In order to give preliminary estimation and parameter studies of different
design schemes, this paper presents a simplified effective stress procedure for evaluating seismic re-
sponse of earth dams in 3—D. The procedure is very simple and enables to determinate the first natu-
ral frequency and crest acceleration of dam in 3—D due to a specified earthquake loading by means of

hand calculation even without computer.
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INTRODUCTION

In recent two decades the analytical procedure of dynamic response for earth dam have been developed
(Seed et al. , 1975, Mejia et al. ,1982). Particularly, the application of FEM in dynamic analysis of
soils effers a useful means for resolving many complicated engineering problems in connection with soil
liquefaction. But the dynamic analysis of earth dam with conventional methods is a troublesome expen-
sive job. Thus, in 1979, a simplified procedure for evaluating embankment response is advanced
(Makdisi et al. , 1979). Using only hand calculation, the procedure can offer an evaluation of max.
crest acceleration induced at crest of dam by the earthquake and the natural period of vibration of earth

dam in 2—D with sufficient accuracy for pratical purpose. The method also allows, through iteration,



the use of strain dependent material properties. However, this method does not take into account the
generation of seismic pore water pressure under earthquake and the 3—D boundary conditions of earth
dam in triangular canyons. In the following the procedure will be extented to include the effects of the

seismic pore water pressure and 3—D conditions of earth dam in triangular canyons.

BASIC THEORIES AND FORMATIONS

Calculation of Max. Crest Acceleration and Natural Period of Dam

Figure 1 shows the max. longitudinal section and max. transversal section of dam. It is assumed that

these sections are syminetrical triangular. Other assumptions inherented in the shear wedge analysis of
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Fig. 1. Earth dam in triangular canyon
(a) longitudinal section; (b) transversal section;

(¢) earthquake acceleration response spectra

earth dam are as follows; (1) the canyon walls are perfectly rigid; (2) the direction of ground motion
is horizontal and parallel to the canyon walls and there are no displacements in other direction; (3) the
dam is homogeneous and the dam materials are linearly elastic; (4) interaction between water in the
reservoir and the dam is negligible; (5) Only shear deformation is taken into account. After shear
wedge analysis, the acceleration u(y,z,t) in any point of dam can be approximately given by (Xu,

1993)

u(y,z,t) & u(y,z,t) = n,®,(y,2)o,V () (1)

in which (effects of higher modes on response have been neglected) ®; is first mode function
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w, is first natural frequency
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where L is length of dam crest, H height of dam, vs=4+/G/p is shear wave velocity of the materal, G

shear modulus and o densitv of the materal. The value V. (1) known as Duhammel’ s intergral is given



by the expression

V. @) = Lﬁge_*f"l('—')sinw}(t — 1)dz 4)

in which w;=0w;y/ 1—A;2=w, for small value of A, A, is critical damping ratio of first mode and ﬁg is ac-

celeration of rigid canyon in x—direction, t the time, 7, is first mode paraticipation coefficient
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The subscripts ‘I’ of symbols w;» w,'» Ays @15 Uy Vi, *+=+=+, in the following will be omitted for sim-
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plification.

At the crest of central cross section of dam, y=H, z=0, ®,(H,0)=1. Therefore, the value of accel-
eration at the crest of this section can be obtained by the expression
u 2 n®(H, eV (t)
and the max. value of crest acceleration of central cross section is as follows
Umax 2= NO(H, 0)aS, &~ 1S, (5)
in which S,, known as the spectral velocity, is the max. value of V (t) and is a function of w,A and the
characteristics of the ground motion ﬁg (t). For small values of A the spectral acceleration S, is approxi-

mately equal to «S,.

At the crest of =L/4 section of dam, y=H, z=+L/4,®(H, +L/4)=0. 563, and the max. value

of crest acceleration is

Upax 2 NO(H, + %—)msv 2 0. 563nS, (6)

Determination of Average Shear Strain and Average Shear Stress

To estimate the strain compatible material properties, an expression for the average shear strain over
the entire dam body should be determined. From the shear slice theory, the expression for shear strain

at any point in the dam as a function of time is given by

ozt = 1 =15 (v, )V () )
ny Y9 ] _nV5245L2+80H2 y Y!ZCL)
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in which @, —ﬁq(4y —12Hy*+8H y—16-f5yz +16Pz ) is the first derivative of function @ for y.
Thus from eq. (7) the max. shear strain at any point may be written as
H? 4L?

Yyx.max — T \? mq)y (y 9Z)Sn (8)

The average max. shear strain for the entire dam body may be determined by an average value (D, ),
of the @, (y,z) in Fig. 2, from which the average value (@, )n.=1. 02/H. The average max. shear

strain in dam body is given as
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Fig.- 2. Vibration of shear strain participation factor (first mode) in dam

(a) central section; (b) L/4 section

_H? 4L’ .
(ny.a\'c)max - nvsz /15L2 + 80H2(<Dy )acha (9)

Assuming the equivalent cyclic shear strain is approx 65% of max. average shear (Y, av)msx+ then
H? 4L?

Clrxmedes = 0-65 X 1. 020 05 s oo

S. (10)

and the equivalent cyclic shear stress can be expressed as
(Tyx.avc)cq = G(ny,avc)cq 1y

Evaluation of Basic Dynamic Properties

Assuming soils as equivalent visco-elastic solid, the following empirical relationships for shear modulus
and damping ratio (Hardin et al. , 1972) can be used
Gmax

G = T+ v (12)
Ya
A= T
Ammax T+ (13
where
Grax = 220K 5, may (0 )2 (in kPa) (14)
Yh=ylr[1+aexp(—b% (15)

in which vy is amplitude of dynamic shear Strain, v;=Tmax/Gumsxs Tmax iS Shear strength, K; ma S0il con-

stant, Amaxs @ and b are parameters related with soil type and loading frequency.

Estimation of Vibration Pore Water Pressure

The following Seed’ s emniriecal formula for vihration nore water nressure will he used in this naner.



Zoy
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N, (16)

where p, is generated pore water pressure, o, is initial effective stress, N is number of loading cycles,

N. is number of cycles to cause liquefaction, 0 is constant.

PROCEDURE OF COMPUTATION

Following steps are included in the procedure of computation

Step 1 Determination of static stresses in dam. Static stresses may be calculated by FEM or by sim-
plified method used in engineering design. Then the initial vertical effective stresses, horizontal effec-

tive stresses and mean effective stresses are obtained.

Step 2 According to average vertical effective stress in dam and the curve of shear stress ratio versus
cycles to liquefaction, and assuming an average shear stress Ty,...» the number of loading cycles to lig-
uefaction Ny can be obtained. For different earthquake magnitude the equivalent number of cycles N,

can be taken from Table 1.

Table 1. Guideline for determing equivalent number of cycles

earthquake magnitude 5.5—6 6.5 7 7.5 8
equivalent number of cycles N, 5 8 12 20 30

Step 3 After Ny and N, are obtained, the seismic pore water pressure p, may be determined by eq-.
(16).

Step 4 When p, and initial mean effective stress om, in dam are known, the mean effective stress on’

can be calculated as Om =0m, —pg and then the max. shear modulus Gma is got from eqg. (14).
Step 5 By assuming average shear strain vYyx.a and basing on the formulas of Tmex and Gmaxs the ves va

etc. can be calculated and then G, A can be determined. For sandy $0ilSs Tmax =0m Sizs where @ is the

angle of internal friction of soils.
Step 6 Calculation of shear wave velocity vg=+/G/p.
Step 7 Calculation of first natural frequency w and natural period T = 2n/w.

Step 8 On the basis of obtained A and T, S, can be determined from earthquake response spectrum

and max. crest acceleration \imu at crest of central cross section and at crest of L /4 cross section of dam



can be computed by eq. (5) and by eq. (6) respectively.

Step 9 Computation the value of average shear strain (vy,.ave)eq by €q. (10) and average shear stress
(tyx.avc>cq by €q. (11)-

Step 10 If the obtained (vYyx.ave)eq and (Ty.aw)eq are indential with the above assumed vy, ,.. and
T,,.aves Lhe iterative computation is finished. If otherwise the obtained new values of (V,x.ave)eq and

(Tyx.a\'c)cq are used for next iteration, the steps 2— 9 will be repeated until the condition of convergency

is satisfied.

COMPUTED EXAMPLE

Suppose that symmetrical earth dam in trianguar canyon as shown in Fig. 1 is subjected to a transveral
earthquake (Taft record in 1952, magnitude 7. 7, adjusted to have a max. acceleration of 0. 2g, its
normalized acceleration response spectra is shown in Fig. 3). The max. height of dam H=46m, crest
length L =184m. The properties of dam material are; cohesion ¢= 0, angle of internal friction p=
30°, saturated unit weight y=2. 1 X 10°N/m?(effective unit weight v =1. 1 X 10*°N/m?, density p=
0.21X10'%g/m*-s?), Poission’ s ratio u=0. 3. The dynamic properties of dam material are: Kz .m=
44y Amax=0. 25, a=0, b=1, 0=0. 7. The curve of shear stress ratio versus cycles to liquefaction is
shown in Fig. 4.Determination of the natural period and max. crest accelerations in central and L/4

sections of dam is demanded.
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Fig. 3. Normalized acceleration response spectra- Fig. 4. Curve of shear stress ratio
Taft record (N—S component) versus cycles to liquefaction

Solution: In order to approximately compute initial static stress, we take the average value of stresses
at half depth on central section and &L /4 section as an average stress in dam. Average vertical effec-
tive stress (0, Jae» average horizontal effective stresses (o, Javes (0. )ave and average mean effective

stress (Omo Jave are computed respectively as follows



1.1 X104 X 23+2 X 1.1 X10* X 11.5

(Oy’)avc = 3 = 169 kPa
. o . p ' 0.3 N

(ox )avc - (Oz )ave - 1 — (Oy )nvc - 1 _ 0. 3 X 169 —_— 72. 4 kPa
(Umol)a\'c = 72‘ 4 + lgg + 72. 4 = 105 kPa

Iteration No. 1: Assume Tyx.ae = 15kPa. Therefore Tyy.ave/ 0y Jave =15/169=0. 089. From Fig. 4, cy-
cles to liquefaction Ny =65. On the basis of M=7.7, from Table 1, N.,=25. Then the seismic pore

water pressure pg is calculated as

2 . /25\Ix67
Py = ?arcsm(ég)
0, = 105 — 56.8 = 48. 2 kPa

Toax = 48.2 X sin30° = 24. 1 kPa

X 169 = 56. 8 kPa

Gumax = 220 X 44 X v/ 48.2 = 0.67 X 10°kPa
Assuming average shear strain vyy,ae=70. 1%, shear modulus G and damping ratio A are computed re-
spectively by eq. (12) and eq. (13) as follows

0.67 X 10°

TTT0.19% X 0.67 X 10°
1+ 4.1

0.1% X 0.67 X 105
24.1
0.1% X 0.67 X 10°
24.1

G = = 0.18 X 10°kPa

r=0.25 X

= 18.3%

1+

. _/0.18 X 105 X 10°
s =y 7T 0.21 X 10°

Thus the natural frequency and natural period are

= 92.5 m/s

462
1842

The value of spectral acceleration for T are obtained from Fig. 3 for A=18. 3%, S./@ma=0. 75, thus
S,=0.2X0.75=0. 15g. From eq. (5) and eq. (6),
Umax &~ 1. 839 X 0. 15g = 0. 275¢g (central section)
Umax =~ 1. 839 X 0.563 X 0. 15g = 0. 155g (4 L /4 section)

w=—92'5>< %115‘—*‘20)(

n
16 =7.1 rad/s T=-—=20.88s

2
7.1

The average equivalent shear strain (Yyx,av)e and the average equivalent shear stress (Tyx,ave)eq are ob-
tained as follows

46 4 X 184?
92. 5% 45 X 184% 4 80 X 467

(Tynavedeg = 0.18 X 10° X 0.077% = 13. 9 kPa
Repeating the same procedure for Iteration No. 2, No. 3 and No. 4, we get the results as shown in

Table 2.

(\/yx.a\'c)cq = 0- 65 X 1- 839 X 10 02 X = 0. 077%



Table 2 Results of iterative computation

Iteration No. max. crest max. crest first natural (Yyxoave Jeq (Tyx.ave Deg
acceleration in acceleration in period T
central section L /4 section
(g) (g) (s) (%) (kPa)
1 0. 275 0. 155 0. 88 0.077 13.9
2 0. 294 0.165 0. 82 0. 066 14.5
3 0. 285 0. 160 0.77 0. 069 14. 3
4 0. 300 0. 169 0.75 0. 068 14. 2
CONCLUTION

Based upon the principle of effective stress, a simplified procedure for evaluating seismic response of
earth dam in 3—D is given. By using this procedure not only the non-linear behavior of dynamic shear
modulus and damping ratio, both of which depend upon the dynamic shear strain, are taken into ac-
count, but also the influence of seismic pore water pressure generation on the shear modulus and 3—D
boundary condition of dam are considered. The procedure enables the approximate determination of
max. crest acceleration and natural period of earth dam in 3—D due to a specified earthquake loading

to be made by hand calculation even without computer.
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