< "> Copyright © 1996 Elsevier Science Ltd
? Paper No. 472. (quote when citing this article)
- Eleventh World Conference on Earthquake Engineering

11 WCEE ISBN: 0 08 042822 3
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ABSTRACT

This paper presents the analytical predictions for the responses of the forced vibration test on
Hualien containment model structure. The predictions were performed blindly by using the
computer programs HASSI-8 and LAYSSI which were developed for solving the soil-structure
interaction problem using the method of hybrid modelling. The results obtained show very good
correlations with the field test results.

KEYWORDS

Soil-structure interaction, model test, forced vibration test, Hualien LSST model, hybrid model,
response prediction.

INTRODUCTION

Following the successful Large Scale Seismic Test (LSST) at Lotung, Taiwan, a second-phase
Large Scale Seismic Test is carrying out at Hualien, Taiwan. It is an internationally cooperated
research program sponsored by NRC and EPRI (US), TEPCO and CRIEPI (Japan), CEA and
EdF (France), KINS and KEPCO (Korea) and TPC (Taiwan). In this project, a quarter-scale
nuclear power plant containment model was built at Hualien to monitor its seismic responses
during strong earthquakes. Hualien is a seismically active area located on the collision zone of
the Eurasian Plate and the Philippine Sea Plate. Strong earthquakes occurred very frequently
in past times. It is anticipated that some strong earthquake data can be recorded here as a
data base for investigating the effects of soil-structure interaction on the dynamic responses of
containment structure during earthquakes. Also, it can be used to verify the degree of dispersions
among various methodologies having been used in engineering design, and thus to improve the
state-of-art in soil-structure interaction analyses. ‘

During the construction of the model structure at Hualien, two phases of forced vibration test
had been conducted on the model structure to get the pre-earthquake information about the
soil-structure system. Like the Lotung LSST project, round-robin blind predictions for both
forced vibration tests of Hualien LSST project were performed by different groups independently
before the test results were released. Two hybrid methods, the HASSI-8 (Hybrid Analysis for
Soil-Structure Interaction) and LAYSSI (LAYered Soil-Structure Interaction analysis) computer
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Fig. 1 Unified ground model for FVT-1 analysis

programs, have been selected by the Taiwan group to conduct the analytical predictions and further
correlation studies. The purpose of this paper is to compare the results of blind predictions with
the field test results.

FORCED VIBRATION TEST BEFORE BACKFILL

The first phase force vibration test (FVT-1) was conducted under the condition when the contain-
ment model had been completed but before backfilled, as shown in Fig. 1. The model structure
is a hollow cylinder with radius of 526 cm supporting a thick roof slab (thickness 150 cm) and
resting on a base mat (thickness 300 cm). The total height of the model is 1613 cm. The test
was conducted by TEPCO (1993) by using an eccentric typed shaker. For the horizontal test, the
model structure was excited at the roof and base levels, respectively, along its radial direction.
For the vertical test, the model structure was excited only at the center of the base. Each test
was run at frequency interval of 0.1 ~ 0.2 Hz to give a complete response curve ranged from
2 Hz to 20 Hz.

UNIFIED GROUND MODEL

The geological conditions of Hualien LSST site had been investigated very extensively by the
CRIEPI, and an Unified Ground Model, as shown in Fig. 1, was then proposed as the basic
ground model for prediction analysis (CRIEPI, 1993). This model shows that the soils from the
ground surface down to the depth of 20 meters can be divided into four layers primarily according
to the increasing of shear wave velocities with depth. The model structure rests on the surface of
gravel formation. To determine the shear wave velocity of the soil underneath the foundation slab,
additional geophysical survey was conducted under the existed condition when the containment
structure had been completed but without any backfill. Based on the results of measurements
and analyses, it has been deduced that the gravels just underneath the foundation slab have an



average shear wave velocity of 317 m/sec, a little smaller than the original ground condition due
to the effects of constructional works (CRIEPI, 1993).

METHOD OF ANALYSIS

Concept of Hybrid Modelling

Two methods are adopted herein for prediction analyses. They are the HASSI-8 and LAYSSI
modellings which are formulated based on the concept of hybrid modelling. Basically, the hybrid
modelling uses method of substructure and frequency domain solution for soil-structure interaction
analysis. Its idea is to divide the whole domain of a soil-structure system into a near-field and
a far-field by a regularly-shaped interface which cuts through the soil region under the structure.
The near-field consists of the structure to be analyzed under prescribed loading conditions and a
finite portion of soil encompassing its base, including embedment if present. It can be modelled
appropriately in three-dimensional form using finite elements. The far-field is a semi-infinite
layered half-space with a surface cavity, which shares a common interface with the near-field. The
dynamic characteristics of the soil medium in the far-field are represented by a complex-valued
frequency-dependent boundary impedance matrix which is coupled to the finite element near-field
through the interface nodal degrees-of-freedom. The impedance of the whole system will be
obtained by assembling the impedance matrices of the near- and far-fields. Based on that, both
seismic ground motions and externally applied forcing functions can be accommodated as the
input excitations to find the time-history response and/or spectrum response of the complete
soil-structure system (Gupta, et al., 1982). In this formulation, all calculations are standard once
"the far-field impedance matrix can be formulated properly to represent the wave motions in the
semi-infinite layered media. Both the HASSI-8 and LAYSSI modellings adopt the same procedure
described above except for the formulations for the far-field impedance, which will be described
subsequently.

HASSI-8 Modelling

The far-field impedance matrix of HASSI-8 modelling is formulated by using the impedance
coefficients generated by Gupta et al., (1982). Three sets of frequency-dependent, complex-valued
impedance coefficients over the boundary of a hemispherical cavity in an uniform half space have
been obtained by using method of system identification and thus can be easily implemented into
the program HASSI-8 to formulate the far-field impedance matrix.

To predict the responses of Hualien FVT-1, the HASSI-8 analytical model adopted is shown in
Fig. 2. A hemispherical interface of radius 21 m is chosen as the NF/FF interface. The far-field
is divided into four layers according to the recommended free-field ground model as shown in
Fig. 1. The bottom layer (Layer 4) is regarded as a semi-infinite half-space since the bedrock is
very deep so that it will have no SSI effect on the response of the surface structure.

The near-field finite element model adopted for the HASSI-8 modelling is shown in Fig. 2(a). The
soil medium in the near-field is modelled by 82 three-to-nine node axisymmetric solid elements.
The number in each element indicates the layer of soil in the Unified Ground Model. The
model structure is also modelled by axisymmetric solid elements. Since the roof slab and the
base mat are very thick, they are regarded as rigid discs in. the modelling. The cylindrical wall
has a thickness of 30 cm. They are modelled by 7 six-node axisymmetric solid elements. The
material properties adopted for concrete are given as follows: density = 2.4 t/m®, Young’s modulus
= 2.88 x 10° kg/cmz, Poisson’s ratio = 0.16, damping ratio = 0.02.



Rigid roof
] .
H
|
|
' M
' ¢
Rigid basemat Ji 44 d
2RI ERE
SRR IRARI!
IR EEIRREL R 3/
I IR R R A J/
IR IEIR R IR I
Jlalatal ata3213¢d
NI REIRERY/
sTalalab wlat o/
el alal sV 47
Nt
r—&-‘*"“//
l "
' (a) Near-field model * (b) Far-field model
Fig. 2 HASSI-8 model for FVT-1 analysis
LAYSSI Modelling

The far-field impedance matrix of LAYSSI modelling is formulated by using weighted residual
method, in which the approximation functions are chosen from the fundamental solutions cor-
responding to a set of ring sources properly distributed in the semi-infinite layered halfspace of
viscoelastic medium (Lee, 1993).

The NF/FF interface can be any regularly-shaped function in this formulation; however, a cylindrical
shape is the most convenient one for the Hualien case. The analytical model for Hualien FVT-1
is selected as shown in Fig. 3. It is a hybrid axisymmetric model, in which the far-field is a
four-layered half-space with a cylindrical cavity of radius 16 m and depth 12 m, and the near-field
consists of the finite element models of model structure and surrounding soils before the backfill
condition. In the blind predictions, the soil properties used for the near- and far-field soils are
adopted from the Unified Ground Model as shown in Fig. 1. The finite element model adopted
for the containment structure is same as the HASSI-8 modelling.

CORRELATIONS OF PREDICTED RESULTS WITH D, RESULTS

Based on the analytical model constructed above, the responses were calculated blindly and then
compared with the test results afterwards. The correlations between the predictions and the D,
responses of field test are shown as follows:

Roof Horizontal Test

For the roof horizontal test, the roof horizontal responses predicted by both the HASSI-8 and
LAYSSI modellings are compared with the corresponding D, responses as shown in Fig. 4. The
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Fig. 3 LAYSSI model for FVT-1 analysis

correlations between the blind predictions of both analytical modellings and the field test are
excellent in both the amplitudes and the phase angles, except a very small difference existed in
the resonant frequency. The predicted value is 4.7 Hz while the D, response shows a value of
4.6 Hz. At resonance, the displacement components of swaying, rocking and elastic deformation
agree quite well with the test results as shown in Table 1. It shows that the model structure
responses primarily in rocking mode. As for the responses of the basemat, they are similar to the
roof response but with much smaller amplitude. The responses predicted by both the HASSI-8
and LAYSSI modellings also correlate very well to the field test results, but not shown here.

Base Horizontal Test

For the base horizontal test, the predicted horizontal responses at the roof level are compared
with the corresponding D, responses as shown in Fig. 5. The blind predictions fit very well to
the field test results in both the amplitudes and the phase angles except a very small difference
in resonant frequency as mentioned previously. The displacement components of roof response
are summarized and compared with the test results in the last two rows of Table 1.

Base Vertical Test

For the base vertical test, the predicted vertical responses in roof level are compared with the
test results as shown in Fig. 6. Both the response curves of analytical modelling and field test are
rather flat. The peak responses of the field test are distributed in the range of 9 to 11 Hz, while
the peak frequency predicted by analytical modelling is around 12 Hz.

CONCLUDING REMARKS
Based on the results presented herein, it can be concluded that both the computer programs

HASSI-8 and LAYSSI are very effective in modelling the dynamic responses of the containment
model structure under forced vibration tests. The predicted response curves of amplitudes and



Table 1 Comparison of Displacement components in roof horizontal response

Position Excitation Natural Damping Rocking Elastic Swaying - Total

Direction Dir. Pos. Freq.(Hz) Ratio(%) Displ. Displ. Displ. Displ.

RF (Record) D2 Roof 4.6 3.7 155.9 53.3 28.4 » 237.6
D2 (65.62%) (22.43%) (11.95%)

RF (HASS1S8) D2 Roof 4.7 4.5 134.6 41.3 15.9 191.2
D2 (70.18%) (21.53%) ( 8.29%)

RF (LAYSSI) D2 Roof 4.7 3.2 170.5 53.9 21.8 245.8
D2 (69.25%) (21.89%) ( 8.86%)

RF (Record) D2 Base 4.6 3.7 40.71 13.74 7.10 61.55
D2 (66.14%) (22.32%) (11.54%)

RF (HASSI8) D2 Base 4.7 4.5 30.59 9.34 3.72 43.62
D2 (70.08%) (21.40%) ( 8.52%)

RF (LAYSSI) D2 Base 4.7 3.2 39.48 12.40 5.40 57.06
D2

phase angles fit very well to the field test results in the frequency range interested. Small

discrepancies existed near the peak responses may be due to the uncertainties of soil moduli and
dampings that can not be accurately determined so far.
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Fig. 5 Comparisons of roof horizontal response in base horizontal test



—_ —_
52.1 gﬂ.‘
4 ULl dpe Jto|UD ¥ vl dJ.u to |UN
E&O —1—[HASS yJ 1 \2.0 LAKSSE 1
i \ 3 ~
d.n.o N d‘x.o ] /
v 4 .
5 l&a"*‘mﬂ/ \ 5 &,p «ﬂ’l‘\
vn.z E T vx.z 7 - -
1 A " A “
: 1 AT TR : 1 [ ] [ |
= 0.8 bnt — 2y T
o age ey < e e
E i E i) N T
K04 5o ]
Z z
o0 0.0 s refrrre
10 11 42 13 14 16 18 17 16 16 20 10 11 1g 18 19 16 16 17 18 19 £0
Frequency (Hz) Frequency (Hz)
380 —r 360 —
300 300
s«peelUD dhe jto|UD ecpseUN to}UT
- —1—| HASS18 (UM 1 - 1T S81 1
40 40
g B 3 oy
= z
o8 100
"
% st g B L
£ 120 = 2
& % - Vi
e : % ” T A7
- i o IR A N
T ey
et . O N s
e ; 10 11 12 13 14 16 16 17 18 19 20 ) S 1011 12 13 14 16 16 17 18 19 20
Frequency (Hz) Frequency (Hz)

Fig. 6 Comparisons of roof vertical response in base vertical test



