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ABSTRACT

This paper compares the properties and the seismic behavior of a system having viscous (VS-) damper with
that having viscoelastic (VE-) damper. The consistent expressions for added stiffness and damping caused
by VS-damper or VE-damper are derived, by including the important effect of the member supporting the
damper. Two fundamental parameters, brace stiffness ratio and damper loss stiffness ratio, are used to
conduct the parameter analysis to investigate the stiffness and damping property of the two systems. Under
some condition, the system having VS-damper can gain substantial added stiffness, becoming similar to the
system having VE-damper. The closed-form expressions for the variations, caused by added stiffness and
damping, in peak response quantities of the two systems are derived by using a compatible combination rule.
Such expressions are applied to the drift-control-based retrofit of a 10-story frame by using either VS- and
VE-dampers. The seismic global and local response are comparatively discussed.
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INTRODUCTION

Use of supplemental energy dissipation devices is considered as an effective way to reduce structural seismic
response. Among of such devices, viscous(VS-) damper and viscoelastic(VE) damper are the two which
dissipate seismic energy through velocity dependant resistance. VS-damper such as fluid damper can be
designed to provide resistance force out-of-phase with harmonic deformation (Constantinou 1993). VE-
damper such as polymer damper usually provides resistance force containing components both in-phase and
out-of-phase with harmonic deformation (Kasai ez al. 1993, Chang et al. 1992). When used in a frame, either
VS- or VE-damper requires a support component such as a brace. Thus, typically the frame contains an
added subsystem consisting of damper itself and a brace. Earlier studies indicated a considerable effect of
brace stiffness on the stiffness and damping of the subsystem (Kasai et al. 1994, Sause et al. 1994). When
subject to harmonic deformation, the added subsystem typically provides the resistance force containing the
components both in-phase and out-of-phase with the deformation. The in-phase component is an elastic force
that depends on the storage stiffness of the subsystem. The out-of-phase component is a viscous force and
corresponding to the energy dissipation that depends on the loss stiffness of the subsystem. Although VS-
damper and VE-damper have different mechanical property, the harmonic response of the subsystem
containing either dampers can be consistently simulated by an equivalent model and such a model is
convenient to compare the performance of the two subsystem on a consistent basis and will be presented
herein.
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This paper also discusses the comparative seismic performance of a frame having either VS- and VE-
subsystem. BY simplifying the frame as a single-degree-of-freedom (SDOF) system, system responses are
investigated through closed-form expressions, by using harmonic excitation as well as idealized seismic
excitation. The results are also applied to drift-control-based retrofit of a flexible steel moment resistance
frame by using either VS- or VE-dampers. Dynamic analysis results for the frame are explained in order
to compare the performance of the two types of dampers and to demonstrate the reasonableness of the SDOF
predictions.

PROPERTIES OF SDOF SYSTEMS WITH VS- AND VE-DAMPERS

Model. The SDOF model with VS-damper, VE-damper and bracing members are shown in Fig. 1
respectively. There K; may stand for lateral stiffness of a one story frame segment, and K, lateral stiffness
of a brace supporting the damper. The VS-damper (Fig. 1(a)) is assumed to have linear behavior and is
represented by a dashpot with a damping coefficient C. In a typical VS-damper, C is known to be almost
constant over a certain excitation frequency range as well as temperature range. However, depending on
design of the damper, the C may strongly depend on the deformation amplitude. This aspect is not the scope
of the present discussion. The VE-damper (Fig. 1(b)) is simulated by two parallel linear elements, a spring
with stiffness K,/ and an equivalent dashpot with damping coefficient C = K"/ @, where o is the circular
frequency of the harmonic excitation. K,  and K,” are the storage and loss stiffness of the VE-damper
respectively and they are frequency and temperature dependent. Because in frequency domain the @C of VS-
damper and K,” of VE-damper govern represent the velocity-dependent resistance forces, the parameter K,”
(= ®C) will be used to establish the connection between VS-damper and VE-damper.
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Figure 1. SDOF System Model

Storage stiffness and Loss Stiffness. In Fig. 1(b) the added subsystem consisting of VE-damper and brace,
is characterized by three parameters, K,', C (= K,”/w) and K,. The added subsystem (Fig. 1(a)) having VS-
damper can be treated as the special situation with K, = 0. The force (F,) - deformation (u) relationship of
the subsystem is:

K, K E 1 C

When subject to the harmonic displacement u(t) = u,,,sin®t, where ® is a given circular frequency, the
damper force F,(t) has the components both in-phase and out-of-phase with the displacement:

KKt +th£‘% (1)

F(H=K,u,, sinot+K, v coswt 2

where K.” and K,” are, respectively, the storage stiffness and loss stiffness of the added subsystem, and they
can be determined by substituting Eq. 2 into Eq. 1:
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Note that for the subsystem having VS-damper, K" = 0, meaning that the damper has only loss stiffness in
the form of ®C. But the subsystem has both storage and loss stiffness (i.e. K,” and K,” are not zero even
if K’ =0, see Eq. 3). Eq. 2 also shows that the added subsystem can be alternatively simulated by a Kelvin
model with two frequency dependant parameters K" and K,” (Fig. 1(c)).

Added Stiffness and Damping. The frame force is in-phase with displacement, Fy(t) = Ku(t). Based on this
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and using Eq. 2, the total resistance force F(t) of the whole system is :

Ft) = F{t) + F® = K+K)u_ sinot + K, u , coswt 4

The term involving sinmt in Eq. 4 indicates the elastic force of the whole system (i.e. in-phase with
displacement u(t)). Thus the whole system’s stiffness becomes K+K,', and K" is named as added stiffness.
The term involving coswt in Eq. 4 indicates the viscous force of the whole system (i.e. out-of-phase with
displacement u(t)), and it is proportional to K.”. Thus K,” reflects the added energy dissipation capability
of the system. By defining added stiffness ratio o, = K,/K, and by using the concept of modal strain energy,
the added damping ratio (Kasai and Munshi 1994, Munshi and Kasai 1994) € = K,"/[2(K+K,)], Eq. 4 can
be expressed as follows:

F®) = v, K{l+a)[sinwt+2§,coswt] (5)
a a//2 a2a//
a"z—zbdﬁ E“= 2 — " (VS-system) ©
PN 2laz+(1+a)ay ]
o + 1+ 2 a// a2 Za//
aazaba‘/{ e (// nd)z d//2 g“:% 7 bnj/ ; 7 2 /12 (VE-system) )
(N g+ 0g) +N gty (gt ag)(oyng*ta,q+ag)+(1+a)ngog

where 1,=K,"/K/ is the loss factor of VE-damper, o, = Ki/K; is the brace stiffness ratio, and o,” = K;"/K;
is the damper loss stiffness ratio which represents the energy dissipation capability of VS- or VE-damper.
The Eq. 6 for VS-damper case can be alternatively derived from Eq. 7 for the VE-damper case by setting

M, — oo, since K’=0. For the VE-damper case, Kasai et al. (1994) have derived the similar expressions by
using a so-called complex stiffness method.

Parameter Analysis. The dynamic behavior of the damped system basically depends on the above two
parameters o, and &, that express the added stiffness and added damping effect. Further it can be seen from
Egs. 6 and 7, both 0, and &, are the function of o, (brace stiffness ratio) and o.,"(damper loss stiffness ratio).
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Figure 2. Added Stiffness Ratio and Damping Ratio vs. Brace Stiffness ratio and Loss Stiffness Ratio

Fig. 2(a) and (b) show o, versus o, and o,” for VS-case and VE-cases respectively. Generally the added
stiffness ratio is a double curvature curve (in VE-case this occurs when o,” is very large, not shown in Fig.
2(b)). When o,” increases, o, increases and reaches the peak value (equal to ¢,), which is confirmed by Eqs.
6 and 7 for VS-case and VE-case respectively. This is because when the damper loss stiffness K,” becomes
very large, the damper becomes difficult to deform and the total deformation of the added subsystem
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concentrates on the brace only, and both VS- and VE-added subsystems can provide the added stiffness K,’
up to magnitude of brace stiffness K. This is also occurs when the system is subjected to high frequency
excitation, since K;” = ®C. With the increase of K,”, VE-case has faster increase of K,” than VS-case at
the beginning especially with a large brace stiffness. Thus, generally VE added subsystem gives larger K.
than VS added subsystem when both o, and o,” are the same between the two subsystems. It is interesting
to note that the K. of VS-system increases faster with a softer brace when «,” increases, indicating the
sensitivity of VS-case against brace stiffness. However, if a very stiff brace is used, the added stiffness of
VS-subsystem can be neglected in the typical range of a,” as shown in Fig. 2(a).

Fig. 2(c) and (d) show added damping ratio &, versus o, and o,” for VS-case and VE-case respectively. In
both two cases the trend of &, is similar. The more stiffer the brace is, the higher damping ratio can be
achieved. This is also mentioned by Sause et al. (1994) for the viscoelastically damped system. &, has a
peak value which depends on the given o,. With respect to a,”, &, varies significantly at the left side of
the peak, and become insignificantly at the right side. With the same o, and o,”, the VS-case has much
larger &, than VE-case when o, and o,” are the same between the two cases. This is because due to its
larger added stiffness K,”, VE-system stores more strain energy than VS-system and yet with same damper
loss stiffness K,” it dissipates the same amount of energy as VS-system.

Harmonic Response. From Egs. 2 and 5 the peak magnitudes of the force of a whole system (F,,,), frame
member force (F;,.,), and damper force (F,,,,) are:

Fmax=umafo(1 +aa)|i 1+4§2 Ff,MM:uman Fd,maxzumax Ka/ 2+Kﬂ// ? (8)
Considering a mass M is attached at the right end of the system shown in Fig. 1, the peak steady state
excitation force F,,, = MS,, where S, is spectral acceleration due to the harmonic ground motion. Likewise,
the peak steady state displacement u,, = S;, where and S, is spectral displacement. Then the S-S,
relationship can be derived from Eq. 8 as follows:

S,(£.0) = {1+4E20?S (E,0) )
where ® = [(K+K,")/M]"? is the natural vibration frequency of the system.

RESPONSE VARIATION DUE TO ADDED STIFFNESS AND DAMPING

Displacement Reduction Caused by Damping. The effect of damping on the reduction of spectral
displacement can be expressed by a damping reduction function Dy. The D reflects statistical trend of the
reduction over various types of earthquakes. Kasai and Fu (1995) obtained a simplified expression of D;
that matches well with the expression given by AlJ (1993) as well as with the values specified by NEHRP
(1994), i.e.:

=Sd(§,T)= 1+25¢, (10)
©SEpTD) \ 1+25€

where S, is the earthquake displacement spectrum. T is the vibration period of the structural system. &, is
the damping ratio of the frame (T = 2m/®). & is the total damping ratio of the system including added
damping ratio £, and frame damping ratio &, (i.e., § = &+ £)).

Variation due to Period Shift. According to NEHRP’s assumption (1991), the seismic coefficient C; is
proportional to 1/T%*. Because C, is intended to reflect the trend of pseud-acceleration spectrum S,(§,T) =
(2n/T)*S (&,T), the S,-variation due to shifting of the period caused by the added subsystem is:

S(ET S EDICRIP T 48
S(ETY) S, ETYERTY T

where and T, is the and period of the original system without dampers. Note that when T is small C; has

a constant value (NEHRP 1991). In such a case, the above equation will overestimate Sy(T), and give a
conservative result when it is used to predict the displacement restriction.

(11)
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Spectrum Reduction Function. As described before, When the original frame and added subsystem are
combined, both vibration period and damping ratio of the whole system change. Based on Eq. 9-11, the
reduction function for S;, namely R, and the reduction function for S,, namely R, can be obtained as

follows:
R,- SE:T) l 14258, T N l %011 )2 (12)
Si(€p Ty 1+25¢ 14258

_ S(ET) | (1+255)(1+48%) X | (1+255)(1+48%)

) (
S,(EpTo) \ (1+25E)(1+48) To (1+258)(1+49)

where o, is defined by Eq. 6 and Eq. 7 for VS-case and VE-case respectively. Note also that 1+o, = (T,

/T)2. Note that Eq. 13 assumes that Eq. 9 derived from the harmonic steady state is applicable to the random
case.

1ra )P (13)

R, and R, can be further expressed by o, and o,” by using Egs. 6 and 7 and § = &+ &,. The results are
plotted in F1g 3(a) and (b) respectively. Note that damper loss stlffness increases (i.e. energy d1851pat1ng
capability increases), the peak dlsplacement decrease effectively when a,” < 1 and less effectively after o,”

exceeds 1, especially when a soft brace is used. It is possible by using VS- or VE-dampers to achieve very
small displacement reduction ratio R, of about 0.15. Also the peak acceleration reaches a minimum value
at o)” of about 0.5. Because of the larger added stiffness, VE-system has about 20% larger spectral
acceleration than VS-system. It appears stiff brace can give more reduction in both S; and S,. However,

such a benefit becomes much less prominent when the brace is too stiff (Fig. 3).
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Figure 3. Variations in Spectral Displacement, Acceleration and Damper Force

Variations in Forces. Since the whole system force F ,, (base shear) and frame member force F,, are
proportional to S, and S, respectively, their variation caused by the added damping and added stiffness can
be found in Fig. 3(b) and (a). By manipulating Eq. 8, the ratio of peak damper force to peak whole system
force (F; (& T)/F,.(§,T)) can be derived. Then using this ratio, Eq. 13, and F,, = MS,, the peak damper
force can be normalized to the peak shear of the original system without damper, i.e.:

Fun®D _ o Fana®D _ o J[I_ 1 )

~dmax(557) P—2 p (14)
FoiCoTy = F (&) (1+a)(1+48)  (1+a)(1+4E2)

Figure 3(c) shows the variation of the above ratio with respect to the two fundamental parameters o, and o,
in both VS- and VE-system cases. In general, with the increase of loss stiffness ratio o,”, the damper force

will increase but becomes almost unchanged when loss stiffness is large. Usually the VS-system has slightly
smaller damper force than VE-system.

It is notable that the accuracies of Egs. 12 to 14 depend on the accuracies of Eq. 10 (for the effect of
damping) and Eq. 11 (for the effect of period shift). The damping reduction function Dy in Eq. 10 appears
to be close to the upper bound equation given by Hanson and Jeong (1994). Hence it conservatively
expresses the effect of damping. Thus when the above expressions are used to estimate the required added
damping as well as accompanying period shift. a conservative result will be obtained especially in VS-case
because variation of VS-system’s response mainly depends on its damping effect.
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MULTI-STORY FRAME RESPONSE

10-story Steel Frame Retrofit. A 10-story flexible and weak steel moment resistant frame (MRF) is selected
in order to demonstrate applications of the above findings and to show the effectiveness of damper in the
frame retrofit situation (Fig. 4). The MRF is designed by Anderson and Bertero as the minimum weight steel
frame. More details about the frame can be found elsewhere (Anderson and Bertero 1969, Kasai and Munshi
1994). The control of the story drift is considered as the key for the frame retrofit. Because as mentioned
before, the VS- or VE-added subsystem can provide very large stiffness under the high frequency excitation,
higher mode responses of the damped frame are largely suppressed and the first mode response dominates
the system displacement. Therefore only 1st mode response analysis is necessary when Eq. 12 is used to
calculate the required reduction of spectral displacement. For the comparison purpose three retrofit cases
are considered. Also, since too stiff brace is not necessary as mentioned, K,/K=10 is selected for all three
cases. In Case-1 VE-dampers are used to limit the maximum story drift angle to 0.8%. Based on the Ist
mode displacement calculation by using spectrum method, the required R ;=0.28. According to Eq. 12 and
Eq.7, K,”/K=1.2 is needed to satisfy the required R,;. In Case-2 VS-dampers are used and they have the
same K,"/K; (=1.2) ratio as VE-frame, that means the two frames have same energy dissipation capability.
In Case-3 VS-dampers are used again but K,”/K=0.5 is selected to make the frame has the same damping
ratio as the VE-frame. The frame’s damping ratio caused by added subsystems is calculated by using the
concept of modal strain energy method (Clough and Penzien 1975, Chang et al. 1991, Kasai and Fu 1995).
The original MRF’s damping ratio is assumed as 0.02. With the same damper loss stiffness (K,”), the
damping ratio of VS-frame (Case-2, 0.50)) is twice as that of VE-frame (0.25). This is because VE added
subsystem has larger storage stiffness which will induce more strain energy stored than that stored by VS-
system.

Dynamic time history analysis are conducted in order to verify the design and to compare the frames’
responses. An artificial earthquake record having peak ground acceleration of 0.4g is used. It simulates
NEHRP spectrum (1991) with parameters Av=Aa=0.4, S=1.2 and R=1 at damping ratio of 5%. The
analytical viscoelastic element (Kasai et al. 1993) is used to model both VS- and VE-dampers. For VE-
dampers the ambient temperatures are set to 24°C and the nonlinear response due to temperature rise is
suppressed. Likewise, the possible nonlinear response caused by VS-damper is not considered. The effect
of temperature rise is not very prominent under the typical duration of the earthquake (Kasai et al. 1993).
The members are also assumed to be elastic. For highly damped building, Kasai and Munshi (1994) as well
as Hanson and Jeong (1994) indicated the similarity of global response between elastic and inelastic frames.

Comparative Performance. Fig. 5(a) shows the envelop of story shear force of the original MRF, VE-frame,
and VS-frames. Because of shorter period caused by larger added stiffness and less damping ratio, VE-frame
has lager seismic load than VS-frames. The shear force reduction can be expressed through the S, reduction.
For Cases-1, 2 and 3, Eq. 13 (Fig. 3(b)) gives the estimation of elastic base shear reduction ratios of 0.62,
0.49 and 0.51, respectively, with respect to the original MRF. For the 10-story frames, the actual story shear
reduction ratios are averaged throughout the frame height, which are 0.51, 0.38 and 0.39 for Case-1, 2 and
3 respectively. Compared with these, Eq. 13 gives 20-30% conservativeness.

Fig. 5(b) and (c) show the envelops of story displacements and drift angles. They also show that seismic
response can be significantly reduced by the dampers. Compared with the target value (0.8%), the drift
angles are controlled very well in VE-frame (less than 0.73%) as well as VS-frame (Case-2, less than 0.62%).
Although VE-frame has smaller damping ratio than VS-frame (Case-2), it can achieve almost same maximum
displacement response as VS-frame. This is because VE-frame has both added stiffness and damping, while
VS-frame mainly has added damping. Accordingly when these frame have the same damping ratio (Case-1
and Case-3), the VS-frame develops larger story displacements and drifts than VE-frame.

Fig. 5(d), (e) and (f) show the maximum seismic elastic member forces. Compared with the original MRF,
all VE- and VS-frames have significant reduced member forces. Since beam moments are approximately
proportional to the story drift, the drift-controlled VE-frame and VS-frame (Case-2) have almost same beam
moments due to their similar maximum displacements. But the VS-frame (Case-3) has larger beam moments
than VE-frame because of its larger displacements as explained above. Corresponding to the story shear
force (Fig. 5(a)), VE-frame has the largest column axial forces and the VS-frame (Case-2) has the smallest.
Due to the added stiffness effect and larger story shear VE-frame has the larger brace forces (damper force)
than VS-frame. Comparing two VS-frame cases (Fig. 3 (c)), with more damper loss stiffness Case-2 has
larger brace forces than Case-3. The normalized brace forces are calculated by using Eq. 15 (Fig. 3(c)) as
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0.40, 0.36 and 0.24 for Case-1, 2 and 3 respectively. Compared with the actual 10-story-average values of
0.33, 0.30 and 0.20, Eq. 15 also gives close and conservative results in brace force estimation.

Fig. 6 show the moment (M,,)-axial force (P,,) interactions of the 1st story columns for the three frames
respectively. The P, mainly depends on overturning moment having components both in-phase and out-of-
phase with the -displacement whereas M, tends to be in-phase with displacement and drift as explained.
Thus time lag exists between the M, and P, and the M -P,, curve has an inclined ellipse shape. The slope
and fatness of such ellipse depend on the frame’s global behavior, such as period and damping of the frame.
Although VE- and VS-added subsystems locally affect the original frame in different ways, their influence
to the global behavior is similar as explained. Accordingly the M,-P,,, curves in the frames become similar.
Due to the larger seismic load (Fig. 5(a)), VE-frame’s M,,-P,,, curves slightly exceeds the yield surface while
VS-frame’s (Case-2) reaches to the surface. But when VS-frame (Case-3) has same damping ratio as VE-
frame, Its M_-P,,; curves exceed the yield surface due to larger moment.

These analysis results were obtained by assuming elastic behavior of the frame members. It is to be noted
that against the 0.4g artificial earthquake representing the design base earthquake (i.e. major earthquake), very
few members of the retrofited frame indicated the forces exceeding the yield limit. In contrast, the original
weak MRF indicates significant member forces exceeding yield limit at numerous locations. These indicate
superior performance of both VE-damper and VS-damper in seismic retrofit of steel building.
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CONCLUSION

Both viscous (VS-) dampers and viscoelastic (VE-) dampers can effectively improve seismic performance
of a frame originally designed as a conventional moment frame. Both VS-frame and VE-frame will have
added stiffness and damping. VS-frame has more damping ratio and less stiffness than VE-frame when their
dampers are designed to have the same energy dissipation capability. The added stiffness of VS-frame can
be neglected only if stiff brace is used and low frequency excitation is applied to the damper. Under the
same ground motion and with the same energy dissipation capability of the damper, VS-frame and VE-frame
have similar global as well as local responses, although the former develops slightly smaller response than
the latter. Note, however, the very large damping ratio of the VS-frame that required to achieve the similar
behavior as VE-frame may be difficult to realize in the actual construction. Moreover, VS-damper of a
commonly considered piston type may be deformation dependent, and its damping coefficient or loss stiffness
can vary with respect to the vibration amplitude. In contrast, VE damper’s property seems to be more stable
with respective to the response amplitude. Further the VE-damper is easy to install and can have a variety
of configuration suited for actual use. These as well as the cost of the VS-damper and VE-damper may play
a key role for actual selection of either damper. Although not explained in this paper, both VS-damper and
VE-damper studied herein have moderate size and commercially available. For added subsystem, brace
stiffness ratio o, = 10 to 20, and damper loss stiffness ratio a,,”= 0.5 to 1.5 are recommended to achieve the
effective results. It is not necessary to use very stiff brace.
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