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ABSTRACT

A three-dimensional dynamic analysis program for saturated porous-rocks and soils (MPDAP-3D)
is developed in this study. The theoretical formulations incorporated in the proposed computer
program are the extension of Biot’s two-phase theory to nonlinear region. Numerical study for
typical verification problems is carried out to show the validation of the computational algorithms
of the computer program MPDAP-3D. It is shown that the computer program MPDAP-3D is a
useful tool for the analysis of the structural safety evaluation of underground openings in natural
geologies during construction and post-construction period.
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INTRODUCTION

Increasing demand for energy from nuclear resources has forced scientists and engineers to focus
much attention on the safety of radioactive waste disposal systems. Long-term safety design of
radioactive waste isolation storage system is a national concern because environmental exposure
to radionuclide has both direct and long-term implications on public health. Thus the use of
underground rock caverns for radioactive waste disposal has been considered in Korea. Proper
structural safety analyses, however, are required to reduce the potential risks associated with such
disposal systems in natural geologies (Kim et al., 1991).

Recent research in geomechanics is mainly focused on transient phenomena occurring in
earthquakes and explosive loading. For all of these the coupling between the deformation of the
geomaterials such as soils and rocks and the motion of the pore water is of primary importance
(Zienkiewicz and Shiomi, 1984; Prevost, 1986).

In this study nonlinear two-phase theory is reviewed and a three-dimensional multi-phase



dynamic analysis program for saturated porous-rocks and soils (MPDAP-3D) is developed. Then,
numerical study for typical verification problems is carried out to show the validation of the
computational algorithms of the computer program MPDAP-3D.

DEVELOPMENT OF THREE-DIMENSIONAL TWO-PHASE CODE

Biot introduced fundamental analytical work describing the behavior of saturated porous media in
a series of papers extending over many years (Biot, 1956). Other investigators have applied
Biot’s analytic results using techniques which approximate his equations with varying degrees of
accuracy and sophistication (Ghaboussi and Wilson, 1972). Theoretical formulations incorporated
in the code MPDAP-3D are the extension of Biot’'s two-phase theory to nonlinear region. These
nonlinear two-phase theories have been developed over a decade (e.g. Blouin and Kim, 1984; Kim
et al., 1986 and 1990).

In this section, the fundamental equations and the three—dimensional elasto—plastic matrix
implemented in the code MPDAP-3D are described.

Finite Element Formulation of Nonlinear Two-Phase Medium

Field equations representing fundamental mechanism of a two-phase medium include principle of
effective stress, constitutive equation for skeleton deformation, continuity equation of pore fluid
flow, equation of motion for the bulk mixture and equation of motion for pore fluid (Kim, 1993).

Principle of effective stress:

0;=05+0; 7 (1)
where o; = total stress, o; = effective stress, 8; = Kronecker's delta, and 7 = pore water
pressure.

Constitutive equation for skeleton deformation:
{doe}=[ D*] - ({de} ==L - (1} - dr @
3-K,

where [ D? ] = elasto-plastic stress-strain matrix for skeleton, {&} = skeleton strain, and K,
= bulk modulus of solid grain.

Contiuity equation of pore fluid flow:
dr= m, - de,+m- n- (degp—de,) 3)
1 - , ﬁz=[ 1— K?] - m , e€r = volumetric diffusion of pore water,
1 K? K
| %]
&,= skeleton volumetric strain, # = porosity, K, = bulk modulus of soil-water mixture with zero
effective stress, and K? = elasto-plastic bulk modulus of skeleton.

where m=

Equation of motion” for the bulk mixture:

O45;=—0° U + O W; (4)
where # = skeleton acceleration, w = apparent water acceleration relative to the solid skeleton,
o0 = mass density of mixture, and o, = mass density of pore water.

Equation of motion for-the pore fluid:
. p .2 ™
”,i=%'wi+—ﬁf" wi + ppc U (5)
where g = dynamic viscosity of the water, @,8 = flow coefficients that are properties of the

porous skeleton only, and U = absolute water acceleration.



These field equations are described in terms of nodal values and expressed in incremental form.
Within each finite element, variables in these field equations can be expressed in terms of element
nodal variables using the shape functions.

(du)=1 N 1 -(du).
(e)=[ B ] -{du),

(6)
{(dw}=[ N 1 - {dw}.
dw;;={17-T N1 -{du).
Stress vector at time step n can be expressed as:
{o,}={0,-1} +{dd’}+{1}- dx 7

Combining Eqs (1), (2), (3) and (6) yields:
{do}=([ D*] '[B]+Zn_1‘{1}'{1}T'[B])°{A_u;} (8)
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where ﬁl=[ 1- 74

Global equilibrium equations for the two-phase medium are formulated by principle of virtual
work and then linearized to be solved by linear equation solver.

Global equilibrium equation at time step n can be expressed in the simpler form:
[ M] -{d,}+[ D1 -{d,}+[ K] -{4d,}={P,}—(R,_}} (10)

Introducing a time integration method which incorporates both Newmark's B method and Wilson's
8 method (Bathe, 1982), we can obtain the following linearized global equilibrium equations which
can be solved simultaneously at each time step:

[ R] -{4d,}={P,} 11)
where the generalized stiffness matrix is given by ,
[ K] =C-[ M] +B,-[ D] +[ K] (12)

and the generalized force vector is given by
{ P,,}={P,,}—{R,,_1}—[ M] '(CZ'{ i:n—l}‘*'cs'{ i:n—l})
[ D ] . (Bz . { dn—l }+Bg ‘ { _d_”_l }) (13)

Three-Dimensio Elasto—Plastic Matri ementation of Theoretical Formulations

The program MPDAP-3D uses the Generalized Hoek and Brown Model (Hoek and Brown, 1982)
to represent the skeleton constitutive relations of soils or porous materials. This skeleton model
can be used for concrete, steel, soils and rock mass. As one of the useful features, the model
includes the empirical data base which is tabulated for several different rock types as a function
of rock quality. The three-dimensional elasto-plastic matrix is derived for the Generalized Hoek
and Brown Model in this study. The model is elastic below the failure surface and perfectly
plastic along the failure surface with the volumetric and deviatoric behaviors dependent upon one
another once the failure surface is reached.

Implementation of the three-dimensional theoretical formulations described in the previous section
will be the major development effort in this study. The existing two-dimensional program
MPDAP (Multi-Phase Dynamic Analysis Program) (Blouin et al, 1990) is modified to extend into



three-dimensional coordinate system. The major modifications involve the implementation of
mass, dissipation, and stiffness matrices in three-dimensional coordinate system.

VERIFICATION PROBLEMS

Results of numerical test for three verification problems is presented in this paper. The objective
of this numerical test is to demonstrate the accuracy and validity of the computer code
MPDAP-3D.

The first verification problem concems fully coupled undrained uniaxial strain response of
saturated porous linear elastic medium as shown in Figure 1. The exact solution for the
undrained stress response is given by Blouin and Kim (1984). The exact ratio of pore water
pressure (m,) to applied total vertical stress 1is 0.4592, and the exact ratio of effective vertical
stress (0,') to applied total vertical stress (0,) is given by 0.5408. Figure 2 shows predicted
undrained uniaxial stress response compared with an exact solution. As shown in Figure 2, the
predicted response by program MPDAP-3D is identical to the exact solution.

The second verification problem concerns Terzaghi’s linear consolidation with initial triangular
distribution of excess pore water pressures. As initial conditions, it is assumed that soil liquefied
and pore water takes all the weight. The exact solution for the excess pore water pressure (7.)
is given by

e 5 (BEH) (sn ) (sin e T "

Figure 3 shows profiles of pore water pressures at 0.05 and 0.5 seconds. And Figure 4 shows
profiles of effective vertical stresses at 0.05 and 0.5 seconds. MPDAP-3D calculations are very
close to the exact solution.

The third verification problem is to check overall two-phase dynamic equations implemented in
the program MPDAP-3D. A vertically propagating planar compression wave through idealized
saturated soil is considered. The input loading, as shown in Figure 5, is a short rise time
triangular pulse with a peak stress of 5000psi and a positive phase duration of 10msec. The
loading pulse is applied to the saturated sand having the properties listed in Figure 5. The load
is applied to an impermeable boundary at the ground surface. Computed profiles of pore water
pressure and effective vertical stress at 20msec are shown in Figure 6 and 7, respectively. The
closed—form solution for this problem is not available. So, the same problem has been solved by
the existing two-dimensional version of MPDAP for direct comparison. These MPDAP-2D
results are not shown in Figure 6 and 7, but they are identical to the MPDAP-3D results.

The last verification problem is to check the implementation of the 3-dimensional formulation of
elasto-plastic matrix derived for the Generized Hoek and Brown Model. In this problem, the
plane strain response of a tunnel subjected to axisymmetric loading as calculated using
MPDAP-3D is compared to a previous semi-analytical solution developed by Piepenburg et al.
(1986). Figure 8 shows a schematic section view of a 60 inch diameter circular tunnel subjected
to a hydrostatic loading of 2800psi. The surrounding rock is assumed to be linear elastic beneath
the failure surface and to follow the Drucker-Prager plasticity model upon reaching the failure
surface. The elastic and strength properties of the rock are listed in Figure 8. By symmetry,
only a quadrant of tunnel cross section is modeled as shown in Figure 9. Figure 10 shows
tunnel deformed shape. Figure 11 shows stresses along the 4.5 from the X-axis. And Figure 12
shows stresses along the 85.5° from the X-axis. The computed stress profiles agree well with

the semi-analytical solution in both the plastic and elastic zones of deformation surrounding the
tunnel.



CONCLUSIONS

A 3-Dimensional Multi-Phase Dynamic Analysis Program (MPDAP-3D) has been developed by
extending the existing 2-dimensional MPDAP. The computer program MPDAP-3D is a useful
tool for the geomechanical analysis since it can solve static, consolidation and dynamic problems
in dry, partially saturated or fully saturated soils and porous rock mass. The program considers
material, geometric, and boundary condition nonlinearities.

Results of verical problems demonstrate the accuracy and validity of the computational algorithms
implemented in the program MPDAP-3D. First three verification problems are mailly performed to
check static, consolidation and dynamic analyses features of two-phase medium. The last
verification problem is conducted to check the elasto-plastic response of the Generalized Hoek and
Brown Model.

Specific applications related to the design of radioactive waste disposal repository include:
o Structural safety of disposal system subjected to explosive loads from dril and blast
excavation during the construction stages.
o Prediction of ground water flow through the repository.
o0 Prediction of stresses and deformations during the multi-staged repository excavations such
as NATM.

REFERENCES

Bathe, K.J. (1982). Finite Element Procedures in Engineering Analysis, Prentice Hall, New York,
USA.

Biot, MLA. (1956). "Theory of elastic waves in fluid saturated porous solid. I, ", J. Acoustical
Society of America, 28, 168-191.

Blouin, S.E. and Kim, K.J. (1984). "Undrained compressibility of saturated soil”, Technical Report
DNA-TR-87-42, Defense Nuclear Agency.

Blouin, S.E., Chitty, D.E., Rauch, A.F., and Kim, K.J. (1990). "Dynamic response of multiphase
porous media”, Annual Technical Report 1, Report to U.S. Air Force Office of Scientific
Research.

Ghaboussi, J. and Wilson, EL. (1972). "Variation formulation of dynamics of fluid- saturated
porous elastic solids”, J. Eng. Mech Div., ASCE, 98, 947-963.

Hoek, E. and Brown, E.T. (1982). Underground Excavations in Rock, The Institution of Mining
and Metallurgy, London, England.

- Kim, K.J. (1993). "Dynamic response of saturated rock masses”, Report Vol. 1 to Nuclear
Environment Management Center, Korea Atomic Energy Research Institute.

Kim, K. J., Blouin, S.E, and Timian, D.A. (1986). "Experimental and theoretical response of
multiphase porous media to dynamic loads”, Annual Report No.l to Air Force Office of

Scientific Research, Washington D.C.

Kim, S.H, Choi, K.S, Lee, KJ., and Kim, D.H. (1991). "A numerical study on the structural
behavior of underground rock caverns for radioactive waste disposal”, Proc. 1991 Joint Int.
Waste Management Conf, 1, 325-328.

Piepenburg, D.D., Kim, K.J., and Davister, M.D. (1986). "Numerical analysis of nonlinear
liner-medium interactioin. Tunnels subjected to biaxial loading”, Technical Report
DNA-TR-86-138-V3, Defense Nuclear Agency.

Prevost, J.H. (1986), "Effective stress analysis of seismic site response”. Int. J. Numer. Anal
Methods Geomech., 10, 653-665.

Zienkiewicz, O.C. and Shiomi, T. (1984). "Dynamic behaviour of saturated porous media; the
generalized Biot formulation and its numerical solution”, Int. J. Numer. Anal Methods
Geomech., 8, 71-96.



A
o Unit Thickness (Plane Strain)
1 Mg = We l Free Impermeable Surlace 100 T I T T T T T T
1 v Verifteation 1. T
0| =
Note that @ represents exact solution
x Unit Height at the applied total axial stress of
] 300 pat -
= L Tow) Axta) Stress —
Ry= RNy x c — ~ »
YIS I v 4444 ; 4] i -7 e
Rigid Impermesble Base ! w P P .
| _ _
/ g Effective Axtal Stress — -~
z | Unit Width I n L s -
-
21— pore tater Pressure — -
K. = 0.3333 x 10° psi i R
Ge= 05x 10° psi ° 1 ! 1 1 L i 1 1 : A 1
n = 03 0.00000  0.0000]  0.00002 €.00008  0.00004  0.00005  D.00008
K¢ = 5.0 x 10° psi RXIRL STRAIN

Ko = 029 x 10° pei

Figure 1 A cubic element subjected to undrained Figure 2 Computed undrained stress response

PORE PRESSURE PSI}

uniaxial strain loading. compared with exact solution.
1C.00 - $.0C -
e e
't'v'-nnfo; ;f.t'; 2vﬂu ue 14 _Q‘B
8.00 R " @ |
o2 0 00 0 ‘ —
LA 4 -
g
O -
600 | 1. {"/O/o a
e O/.( P
s »
4o | | ——— {a’ ,q»'a/n ¥
R e e =
g e re
Ve - re
A o [
2.00 ) ’ -
¥ )
e E’u/z
2
P 2
0.00 :
0 20 4o 60 B0 100
INCH
Figure 3 Pore water pressure profiles at 0.05 Figure 4 Effective vertical stress profiles at

and 0.5 seconds. 0.05 and 0.5 seconds.



EFFECTIVE VERTICAL STRESS (PSI)

P (psi)

$000

0.01
| po— .
ot » 1,56 x 107

ASSUMED MATERIAL PROPERTIES
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Figure 5 Loading time history and material

properties.

80

40

. /!

0 \"4
-20 -
o SO 100 150 200 250
DEPTH (FT)

Figure 7 Profiles of effective vertical stress

at 20 msec.
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Figure 6 Profiles of pore water pressure
at 20msec

Py= 2800 psi

Materia) Mogel: Drucker-Prager Model

Rock Properties: E = 1,150,000 psi (Young's Modulus)
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oc = 1,800 psi (Unconfined Strength)
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Figure 8 Circular tunnel subjected to
axisymmetric loading
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Figure 11 Stresses along 4.5 degree from X-axis Figure 12 Stresses along 4.5 degree from X-axis



