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ABSTRACT

The evaluation of the response of a combined primary-secondary system requires the following fundamental
steps: i. the solution of one or two eigenproblems with real solutions; ii. the application of a coordinate
transformation which reduces, according to the so-called component-mode synthesis, the state variables; /ii.
the solution of an eigenproblem with complex eigenvalues and modal shapes. It follows that the evaluation of
the response requires the determination of complex modes by numerical techniques, which are not as robust as
techniques currently used for the solution of the real eigenvalue problem, and the use of complex algebra. In
the present paper an unconditionally stable step-by-step procedure is presented to evaluate the response
without using complex quantities. The method is based on the evaluation of the fundamental operator in
approximate form of the numerical procedure. The great accuracy of the method is shown by performing
accuracy tests.
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INTRODUCTION

Often, in dynamic analysis of structural system we have to evaluate the response of industrial or civil buildings
which can be considered as composed by a primary structure connected with a secondary one (Chen et
al.,1988). In many cases we encounter light secondary structures (HVAC, piping, equipment etc.) supported
on heavy primary ones (nuclear power plant, building, offshore platforms, etc.). In the other cases we have
heavy secondary substructures as in the problem of seismic isolation where the secondary substructure
(seismically isolated building) is supported on the primary one (the base isolation system). In both cases the
combined primary-secondary system possesses characteristics which are uncommon for the usual structures
and the traditional analysis used for the latter is not feasible. Indeed for these combined structures we can have
numerical problems in evaluating the response because of dissimilarities in the stiffness, damping and inertia
properties of two substructures. It follows that usually the full eigensolution of combined subsystems is
avoided and the traditional modal coordinate transformation is substituted by another one based on the so-
called component- mode synthesis (Muscolino.,1990). By using the latter coordinate transformation we arise
at a two-step eigenvalue problem: the two substructures eigenproblems which give real eigenproperties, and



the transformed eigenproblem, which gives complex eigenproperties. Methods for the calculation of complex
eigenproperties are not as robust as the techniques currently used for the solution of the usual eigenproblem.
For this reason approximate numerical procedure have been proposed to avoid the complex eigenproblem
(Singh et al.,1987; Spanos et al.,1988; Harichandran et al., 1989; Falsone et al,1992). In this paper a
numerical technique to evaluate the response of linear combined structures with both light and heavy
secondary subsystems is proposed. The proposed method requires the evaluation in approximate form of the
so-called transition matrix (Meirovitch., 1980; Muller et al., 1985) which represents the fundamental operator
of the unconditionally step by step procedure here adopted.

GENERAL FORMULATION FOR STRUCTURAL SYSTEMS COMPOSED BY TWO
SUBSTRUCTURES

The equations of motion of an ng-degree-of-freedom (n-DOF) secondary subsystem supported on an ny
DOF primary subsystem multiply connected to it and subjected to a seismic input can be written, in terms of
'total' or 'conventional' displacements, as follows:

M, u,() +C, u,(1)+ K, u (1) =-M,7u () (1)

in which 7 is the (nx1) influence vector, #.(¢) is the ground motion acceleration, the dot, over a variable,
denotes its time derivatives and the vector u/?) is the total displacement vector (of order n = ngtny) given as :

u ()= [u 0y w0 @

where u(#) and u,(?) are the displacement vectors with respect to the ground of the secondary and primary
subsystems respectively. In this paper the properties associated with the primary and secondary substructures
will be identified by the subscript p and s, respectively.

In equation (1), M,, C; and K, are the mass, damping and stiffness matrices of the composite system given as:

oMo c ¢ C & K \
“lo M,+M,| > T |C, C,+C, | ' |K, K,+K, @

where M, C,, K, Mp, Cp and K, are the mass, damping and stiffhess matrices of the secondary and primary
subsystems respectively, considered as fixed at their own bases (i.e. while the primary one is assumed to be
fixed at ground ,the secondary one is assumed to be fixed at the multiple support points on the primary one as
well as on the ground ); Csp and Ksp are matrices representing the physical coupling between the two
subsystems and the matrices M,, C, and K, represent the increment to the mass, damping and stiffness
matrices of the primary subsystem due to the presence of the secondary one.

As clarified in a recent paper (Muscolino.,1990) , the dynamic response of a combined system can be better
represented when the so-called admissible coordinate transformation is adopted; this coordinate
transformation is given as follows:

u(t)=T,q(2) 4
where ¢(?) is the vector of modal coordinates while I, is the transformation matrix, given respectively as (with
argument omitted):

qs q)s N q) P
q [q,,] ; ‘ [ 0 o (5)

In equation (5) N is the so-called pseudostatic influence matrix, ®, and @, are the modal matrices of the two

subsystems ( of order ng x mg and n,, x m,, respectively, whit ng < ng and my, < n,, ), normalised with respect
to M and M, respectively and obtained by solving the following eigenproblems:



MO =-K®, ; MO0 =Ko, (6)
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where Q_ and €, are two diagonal matrices listing the natural circular frequencies @, of the secondary and
primary subsystems respectively. The criterion for choosing the order of the modal matrices @, and @, in the

use of this coordinate transformation can be based upon the natural frequencies of the two substructures taken
separately. By using the admissible coordinate transformation defined in equation (4) and assuming that the
two substructures are classically damped, equation (1) becomes a set of m differential equations (with
m=mgtmy generally smaller than the number of equations of the original system) which can be written as :

mij +cq +kq =-T, M,z ii (t) (7)

where m , ¢ and k are symmetric and positive definite matrices, given respectively as :

I, @] (M, + M,N)®, I:cs 0] . [Qj 0 ®
m= ; Cc = ; =
O (M, +N'M,)®, I, +®,AMO, 0 c, 0 O +DAKD,

In equations (8) I, is the identity matrix of order m, 0 is the zero matrix and AM and AK are given
respectively as follows:

T T -1
AM=M,+N"M,N ; AK=K,-K_K]'K, )

Note that, if the two subsystems are assumed individually classically damped, the matrix c is a diagonal one
because of the matrices ¢, and c, are diagonal ones, and AK is a full matrix that becomes a zero one for

secondary subsystems mono-connected to primary one.

It is to be emphasized that a quite different component-mode synthesis coordinate transformation with respect
to the one previously described is required for seismically isolated structures. These structures can be
considered as composed by a primary one (the base isolation system) and the secondary one (the isolated
building). For such composed structure the damping of the isolator is usually referred to the total mass of the
combined structures which is evaluated lumping the mass of the secondary system to the mass of the primary
one. It follows that the coordinate transformation (4) as to be substituted by the following one:

= - |®, NO,
u()=L.q(1) ; F,=[0 o ] (10)
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with @ ,modal matrix solution of the following eigenproblem
T o2 x
(M, +N"M,N)®,Q] = (K, +AK)®, (1)
normalised with respect to the matrix (M , N TMSN ) . By using equation (10) we can rewrite equation (7)
in the form:
mq +cq +kq =T M,z ii (1) (12)
where m is a full matrix while ¢ and k two diagonal one, given respectively as follows

_ I, O MN®D, _ e, 0] - Q2 @
m=(_ T ; €= _ | k= =2 (13)
O N'MO, 0 c 0o Q

mp 14



SOLUTION OF MOTION EQUATIONS

Equations (7) and (12) represent two sets of coupled differential equations which cannot be decoupled in

other subspaces because of the relationships &k m ¢ # cm 'k and km'c#cm™k hold (Caughey et al.,
1965). It follows that the solution of equation (7) and (12) can be obtained by the 2rz-dimension state vector
approach. By means of the approach equation (7) can be written as follows

X = Ax + Bt ii (1) (14)

q 0 I 0 r
X =i, 5 A = -1 -1 5 B = -1 r, M (15)
q -mk -mc -m

In order to obtain the solution of equation (14) it needs to evaluate the inverse of matrix m . Due to the
positive definite of matrix m we can calculate alternatively the inverse by means of the Cholesky
decomposition of matrix m obtaining the lower triangular matrix T as:

where:

T =m (16)
It follows that by means of the following coordinate transformation:
91 =T y(1) (17)
we can write equation (7) as:
J(t) +H(E+AE)() +(Q +AQ )p(t) = -T T, M,z ii () (18)

where = and Q® are diagonal matrices where elements are the elements on the principal diagonal of the
matrices T '¢T™" and T kT respectively, while AZ and AQ® are matrices having zero diagonal

elements and the corresponding off-diagonal elements of T ¢T™" and Tk T respectively. Notice that

the inverse of the triangular matrix T can be evaluated in a close form solution once the matrix T is calculated.
Equation (18) represents a set of second order coupled differential equations whose solution can be obtained
by means of the 2m dimension state vector approach. For this purpose, introducing the vector z(#) of the 2m

state variables equation (18), can be written a follows:
) = Da(t) +V £(2) (19)

where:

) 0 L[], 0
f@O)=-ru(n) ; D= -(@*+aQ%) -(E+ag)| ° z=[y] ’ Vz‘_T'lI‘,TM,] (20)

The vector solution z(z) of equation (19) can be written in integral form as follows (Muller et al., 1985;
Borino et al., 1986):

(1) =0O(t-t,) z(to)+j®(t -7)Vf(r)dr 21

°

where z(z,)) is the vector of initial condition in the modal state-vector space and ©(f) is the so-called
fundamental or transition matrix (Meirovitch., 1980; Muller et al., 1985), given respectively as follows:

T'T u B i 4
z(t) = | s @@ =Yexp[tA]¥™ ; I, = (22 a,b.c)

M, -®'MN
T'T 'a,

T
0 oM,

In equation (22 b) ¥ and A are complex matrices listing the eigenvectors and eigenvalues of D respectively,



that is :

DY=YA (23)
In many cases of practical interest the convolution integral (21) cannot be computed in closed form and a
numerical solution method has to must be applied. To this purpose let the time space be divided into small
intervals of equal length A7 and let 7, =0, ¢,,...,t; ;. 141, be the division times. By assuming that the equation

(21) is satisfied at the above discrete time instants and adopting a piecewise linear forcing function vector in
each interval, we can write the numerical solution of equation (21) as follows (Fiedler., 1986):

Utew) = O(AD) 2(2,) +7,(AD) f (1) +7,(AD f (1,,1) 29

where:
v (At) = —{-Al—t [®(At) - I] - ®(At)D}D_2V ; v.(Ar) = {i[@(At) - I] - D}D_ZV (25 a,b)

Equation (21) gives an unconditionally stable step-by-step procedure where the only source of numerical
errors is in the modelling the forcing function vector as a stepwise linear function (Fiedler., 1986). Once the
response in terms of state variable is evaluated, we can evaluate the conventional response &,(f) and #, ()

as follows:
u)=C, T y@) ; a@)=T,T p@) (26)

where y(¢) and y(¢) are the first m and second m element of vector z(t). Similar procedure can be obtained
applying the previously described solution to equation (12).

APPROXIMATE EVALUATION OF THE TRANSITION MATRIX FOR COMPOSED
STRUCTURES

The main computational drawback, in evaluating the response of equation (19), is the evaluation of complex
eigenproperties of the matrix D required for the evaluation of the transition matrix. It is well known that the
solution of the eigenproblem (23) represents the main computational difficulty in the analysis of composed
structures. Recently it has been shown that the computation of complex eigenproperties of D can be avoided
by directly evaluating the transition matrix in approximate form by means of Taylor expansion leading to a
conditionally stable step-by-step procedure (Falsone et al., 1992). In this section an alternative method
recently proposed (Muscolino et al., 1995) is here extended to evaluate in approximated form the transition
matrix of composed structures such that the step-by-step procedure remains an unconditionally stable one. In
order to do this, we remember that the transition matrix O(¢) is the solution of the following differential
equation (Muller et al., 1985):

() =DO() ; O0)=I ; O@)= exp[D ¢ (27 a,b,c)
It follows that one can represent the transition matrix as a solution of equations (27 a) by the matrix

exponential function. Setting

0 1 0 0
D=D,+D, ; D,= 0 -& ; Dy = _AOQ? AR (28 a,b,c)

and substituting the matrix D, in the form defined in equation (28 a), into differential equation (27 a) we can
write:
O(t) = D,0(t) + D, 0O(t) (29)

In this equation the second term on the right-hand side, which takes into account of the coupling terms, is
considered as pseudo-force matrix. It follows that the integral solution of equation (29), with the initial
condition (27 b), can written as follows:



O(t) = exp|t D,] ©(0) + jexp[(t -17) Dd] D, O(7) dr (30)

By observing that exp[¢ D,] is the transition matrix of the composed structures, we can write a set of
decoupled second order differential equations having damped matrix X and stiffness matrix Q2

-g(NQ* k()
exp|tD,|=0O,#) = . 31
aleD.] - 0,00 EO% O on
where g(#) and h(?) are two diagonal matrices whose i-th element is given respectively as:
h(t)=g(t) = ;e~§‘m"' sin(wt) ; g(t)=- _172_;,0,,, [cos(ait) + @sin(a,t)] (32 a,b)
wi i wi

in which o, = , & =E,/20, and o, =®,,/1-¢£; . The numerical step-by-step solution of equation
(30) by assuming the elements of the transition matrix ®(7) piecewise linear in each step, can be written in
approximated form as follows (Muscolino et al., 1995):

8(A1) = [I-T,(A1)] [©,(A1) +T, (A1) (33)

where (5( At) is the approximation of the effective transition matrix defined in equation (30) and:
I, (At) = [@d(At) - Kl;La(A’)] D;lbf ; T(Af) = {i L,(Ar)- I] D;lDf (34)
LA =[®,(A)-I|D,” (35)

By substituting the matrix ®(At?) given in equation (33) into equation (24), we can perform the numerical
solution of equation (19) without solving any eingenproblem.

ACCURACY

In a very recent paper it has been shown that the numerical procedure based on the approximate transition
matrix, evaluated in the previous section, leads to a unconditionally stable step-by-step procedure (Muscolino
et al., 1995). Moreover it has been show that: i) a good accuracy of the numerical procedure is achieved
assuming a time step lesser or equal to 1/8 of the minimum natural undamped period of the modes included in
the modal analysis; ii) a bigger time steps, although does not imply stability problems, does not account for, in
accurate form, the contributes to time history of the modes having period higher than 8As. Extending these
concepts to composed primary-secondary subsystems we can have a good accuracy if we known the lowest
undamped period of the composite system exactly or alternatively in approximate form. This period can be
evaluated once the highest eigenvalue of the matrix G =Q®+AQ® is knows. Obviously, for composite
structures, having detuned eigenvalues for which the undamped eigenvalues of the composite system does not
differ very much from the corresponding eigenvalues of the two subsystems we can evaluate the step of
numerical procedure equal to 1/8 of the lowest period of the two substructures separately taken. In the other
cases to have a good accuracy we have to evaluate the highest eigenvalue of the matrix G. Approximately this
eigenvalue can be evaluate by using the Georschgorin theorem (Fiedler., 1986) and consequently the step of
the numerical procedure can be evaluated as follows:

At < 7[/ (4,/ max(w; )) ; max(@?) < max(Q,z, +Z|AQ§) (36)
J=i

The accuracy tests are performed considering the structures depicted in Fig. 1 subjected to a sinusoidal seismic
input. In particular the composite structure of Fig. 1.a is composed by a three degree-of-freedom primary




substructure having m, = ms = ms = ms = 500 N sec’ /cm, k/2 = 40000 N/cm, damping ratio for all modes
& = 0.05 and by a three degree-of-freedom light secondary substructure having m, = m; = my = m3 = 4
N sec’ / em, k;, = 100 N/cm, damping ratio for all modes & = 0.05. The undamped natural circular frequencies

are i, = 5.63 rad/sec, wy, = 15.77 rad/sec, ws, = 22.79 rad/sec, wy, = 3.83 rad/sec, wp; = 7.07 rad/sec,
w3 = 9.24 rad/sec. In the numerical test the seismic circular frequencies has been assumed equals to
@y = 4 rad/sec and @y = 6 rad/sec. The corresponding percentage errors of the largest peak of the response of
the structural masses evaluated by means of the proposed procedure are reported in table I. In Figure 2.a are
depicted the responses evaluated by means of proposed numerical procedure and the exact one for the masses
which present in table I the highest percentage errors. In Figure 1.b is depicted the isolated structure of the
second example studied in this section. In particular the structure is a three degree-of-freedom with m, = m, =

my = ms = 500 N sec’ Jem, k/2 = 40000 N/cm, damping ratio for all modes & = 0.05, wis = 5.63 rad/sec
was =15.77 rad/sec, wss = 22.79 rad/sec while the isolator system has m; = 2.5 N sec’ /cm, ki = 8000 N/cm,

&= 0.1. The numerical tests has been performed for w,= 2.5 rad/sec and wy = 6 rad/sec. The percentage errors
hare reported in table II while in Fig. 2.b hare depicted the exact and approximate response in the two most
unfavourable cases. The numerical tests described here show the great accuracy of the proposed procedure.

CONCLUSIONS

A numerical procedure has been presented in order to evaluate the seismic response of combined primary-
secondary systems via component-mode synthesis method. It is well known that this method requires the
solution of two eigenproblems with real solution and an eigenproblem with complex solution, the later in the
reduced subspace, after the application of the so-called admissible coordinate transformation. The proposed
procedure avoids the complex eigensolution evaluating the fundamental operator of the step-by-step solution
in approximate form. The great accuracy of the method, which is unconditionally stable, has been shown in the
accuracy section.
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Fig. 1. Structures for accuracy tests; a) composite structure; b) isolated structure

Tab. 1. Percentage errors of the largest peak of the responses of ~ Tab. IL. Percentage errors of the largest peak of the responses

the composite structure of the isolated structure
Mass o, =4 rad/sec | o, =6 rad/sec Mass o, =25 rad/sec | o, = 6 rad/sec
1 0.0968 0.1882 1 0.1136 0.0278
2 0.1300 0.0316 2 0.1179 0.0329
3 0.1575 0.7212 3 0.1191 0.0269
4 1.5680 0.4546 4 0.1078 0.0143
5 0.2130 0.0660
6 0.4698 0.1222
0.08 0.20
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Fig. 2. Composite structures responses: dotted line approximate, solid line exact. a) &x=4 rad/sec; b) »=6 rad/sec;
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Fig. 3. Isolated structure responses; dotted line approximate, solid line exact. a) ax=2.5 rad/sec; b) w6 rad/sec;




