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ABSTRACT

The second author has recently proposed an innovative method to calculate upper bounds on the seismic
response of structures with stiffness uncertainty. It has been shown that there exist two upper bounds on the
seismic response, the principal upper bound (PUB) and the secondary upper bound (SUB), and two associated
modes, the principal mode (PM) and the secondary mode (SM), which correspond to the two most
unfavorable stiffness distributions. The PM and SM have similar shapes to the conventional first and second
modes yet are not identical to them. Although a complete but non-unique set of modes can be generalized by
the orthogonality condition from the PM and SM, the higher order modes (third, fourth, and so on) have zero
modal participation factors and thus do not participate in modal response. The seismic design of a complicated
multi-degree-of-freedom system can therefore be made on the basis of a simplified two-degree-of-freedom
system.

Through several examples in this paper, it is further shown that the difference between the PUB and SUB is
just the equivalent static solution (ESS) if the acceleration response spectrum is taken as the input ground
motion. A formula for calculating the PUB and SUB of the seismic bending moment for high-rise buildings is
provided.
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INTRODUCTION

An innovative method was proposed to calculate upper bounds on the seismic response on the structures with
stiffness uncertainty (Wang et al., 1990, 1991, 1993, 1994). For a spatial elastic system with lumped masses,
the response of the internal force F under an earthquake is (Wang et al., 1994)

F=[3mY LdnA=y(d)A 1)



where m; is the lumped mass at node £, dj; is the modal displacement of node i in j direction, J; is the influence
coefficient of node i in j direction, A is the acceleration response spectrum, and 7) is the modal participation
factor (MPF) given by

2.md,

n= Zimiz dlz, )

Note that the stiffness of the system does not enter (1). Note also that the modal response of the internal force
F is only a function of modal displacement dj; if the acceleration response spectrum A is known. The upper
bounds on F can therefore be found by maximizing y{d) with respect to d.

It has been shown that (Wang et al., 1990) there exist two upper bounds on the seismic response -- the
principal upper bound (PUB) and the secondary upper bound (SUB), and two associated modes -- the
principal mode (PM) and the secondary mode (SM), which correspond to the two most unfavorable stiffness
distributions. The PM and SM have similar shapes to the conventional first and second modes yet are not
identical to them. Although a complete but non-unique set of modes can be generalized by the orthogonality
condition from the PM and SM, the higher order modes (third, fourth, and so on) have zero MPFs and thus do
not participate in modal response. The seismic design of a complicated multi-degree-of-freedom system can
therefore be made on the basis of a simplified two-degree-of-freedom system.

Through several examples in this paper, it is further shown that the difference between the PUB and SUB is
just the equivalent static solution (ESS) if the acceleration response spectrum is taken as the input ground
motion.

EXAMPLE I: SIMPLE LUMPED MASS SYSTEM

Consideration is first given to a simple two dimensional lumped mass system with unknown stiffness (see
Figure 1). From (1), the modal responses of the shear force Q and bending moment M are

Qo = N(=myu; —myu,)A

Q.= n(_%mzuz + %mzvz )A} ®
M, =n(-4mu, —8m,u, +3m,v,)hA
M, = n(-4m,u, +3m,v, )hA } @

where u; and v; are the horizontal and vertical modal displacements at node i, and 4 is the unit of length. Under
horizontal and vertical earthquakes, the MPFs are
m,u, + m2u2

&)
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Allowing small deformations only, v; can be expressed in terms of the independent coordinate i;
{vl } [ 0 0 ]{u, } -
v, % - % )

Let u;=x and uy=1. Then, if m;=my=m

_16(x+1)
M= 5y —18x+25 ®
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If m;=2m and my,=m
n = 16(2x +1)
“ 41x%—18x+25
n = 12(x—1)
' 41x* -18x+25

(10)
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The upper bounds on the shear force Q and bending moment M can be obtained by substituting (8)-(11) into
(3) and (4) and finding the extrema of Q and M (see Table 1).

The same result can be reached by choosing different independent coordinates, for example, the increments of
slopes of bars 0-1 and 1-2 in Figure 1, ¢ and e>.

u and v may be expressed in terms of e; and e; as

U, 4 0
u, —h 4 4 |([e (12)
v, 0 0 |le,
v, 0 -3
Let e;=y and e,=1, then the MPFs become
8y+4 m,

u = _—= 1 13
L h(32y* +32y+25) (mz (1)
M= Lo (14)

h(32y° +32y +25) m,
12y +4 m,
= 1 =7 15
T h(48y* +32y +25) (mz (15)
-3 m,

, = _—=2 16

1 h(48y” +32y +25) (mz (16)

Similarly, the upper bounds on the shear force Q and bending moment M can be obtained by substituting (13)-
(16) into (3) and (4) and finding the extrema of Q and M (see Table 2).

The ESSs of shear force and bending moment are listed in Tables 1 and 2 for comparison. The difference
between the PUB and SUB is just the ESS.

EXAMPLE II: BUILDING FRAME

The interstory shear force Q and bending moment M in the building frame with unknown stiffness (see Figure
2) may be solved as

.
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Figure 1. A folded cantilever in example I Figure 2. A building frame in example II
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(a) and (b): PM and SM for QBC, QCD and MC under horizontal and vertical earthquakes
(c) and (d): PM and SM for QDF, QFG and MF under horizontal and vertical earthquakes
Figure 3. Principal and secondary modes in example 1I




Table 1. Result summary of example I (part 1)

Internal

mym; Quake Product Function X1 X2 PUB SUB | ESS
! Forces
Qo1 16(c+1)"/F(x) 1 -1 2 0 2
1 horizontal O 0.8(x+1)(9x-25)/F(x) 0469 | -7.612 | 1.107 | 0307 | 0.8
M, 40+ 1)(7x+41) /F (%) 0.727 | -2.009 | 12.671 | 0.671 12
M, A(x+1)(9x-25)/F(x) 0469 | -7.612 | 5.536 | 1.536 4
Qo 12(x-1)(x+1)/F(x) 0.186 5369 | 0.515 | 0.515 0
1 vertical O 0.6(x-1)(9x-25)/F(x) -0.377 1.540 | 0.664 | 0.064 | 0.6
’ M, 3(x-D)(Tx+41)/F(x) -0.046 | 2.505 | 4932 | 1.932 3
M, 3(x-1)(9x-25)/F\(x) -0.377 | 1.540 | 3.319 | 0.319 3
Qo 16(2x+1)*/Fa(x) 1 0.5 3 0 3
2 horizontal On 0.8(2x+1)(9x-25)/F5(x) | 0.419 | -2.593 | 1.266 | 0466 | 0.8
M, 4(2x+1)(23x+41)/F3(x) | 0713 | 0919 | 16.874 | 0.874 | 16
M, 4(2x+1)(9x-25)/F5(x) 0419 | -2.593 | 6.330 | 2.330 4
Qo 12(x-1)2x+1)/F(x) -36.635 | 0.235 | 0.586 | 0.586 0
) vertical On 0.6(x-1)(9x-25)/Fx(x) -0.215 1.513 | 0.638 | 0.038 | 0.6
M, 3(x-1)(23x+41)/Fx(x) 0.065 3.852 | 4966 | 1.966 3
M, 3(x-1)(9x-25)/F»(x) -0.215 1.513 | 3.191 | 0.191 3
F(x)=25x*-18x+25
F,(x)=41x"> -18x+25
Table 2. Result summary of example I (part 2)
— Quake Internal Product Function i 2 PUB SUB | Ess
Forces
Qo 16(2y+1)°/G\(y) * 0.5 2 0 2
1 horizontal Oz 0.8(2y+1)(16y+25) /G\(y) | 0.884 | -0.884 | 1.107 | 0.307 | 0.8
M, 4(2y+1)(48y+41)/G(y) 2.668 | -0.668 | 12.671 | 0.671 12
M, 4(2y+1)(16y+25) /Gi(y) | 0.884 | -0.884 | 5.536 | 1.536 4
Qo1 122y+1)/G(y) 0229 | -1.229 | 0.515 | 0.515 0
1 vertical O 0.6(16y+25)/G\(y) -0.274 | -2.851 | 0.664 | 0.064 | 0.6
M, 3(48y+41)/G\(y) -0.044 | -1.665 | 4.932 | 1932 3
M, 3(16y+25)/G(y) -0.274 | -2.851 | 3.319 | 0.319 3
Qo1 16(3y+1)%/Ga(y) * -0.333 3 0 3
2 horizontal O 0.8Cy+1)(16y+25)/G2(y) | 0.772 | -0.722 | 1.266 | 0.466 | 0.8
M, 4(3y+1)(64y+41)/Ga(y) 2479 | -0479 | 16.874 | 0.874 | 16
M, 4(3y+1)(16y+25)/Gx(y) 0.722 | -0.722 | 6.330 | 2.330 4
Qo 12(3y+1)/Ga(y) 0.306 | -0.973 | 0.586 | 0.586 0
2 vertical On 0.6(16y+25)/G(y) -0.177 | 2948 | 0.638 | 0.038 | 0.6
M, 3(64y+41)/Gx(y) 0.069 | -1.351 | 4966 | 1.966 3
M, 3(16y+25)/Ga(y) -0.177 | -2.948 | 3.191 | 0.191 3

G,(y) =32y* +32y+25
G,(y)=48y" +32y+25
* very large number
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where X; and Y, are the horizontal and vertical loads at node i. The MPFs under horizontal and vertical
earthquakes are

Mmpg +mequ. +tmpup +mzu,

= 19
(e mguy +m (Ul +vi)+myul +mouk (19)
MmeVe
= 20
(B mgul +m (Ul +v2)+myul + mou’ (20)
Expressing uc, v¢, and ur in terms of the independent coordinates ug and up, gives
Uc 036 0.64
u
ver=|048 —048 { B} @1
u
Ug 0 1 b
‘Let mp=mc=mp=m and mp=2m, and let ug=z and up=1, then (19) and (20) become
136z + 3.
. = (+§42 (22)
1.36z° +3.64
_(0.48z-0.48) 23)

¥ 1367% +3.64

Replacing X; and ¥; by mu;A and mv,A, the PUB and SUB on the interstory shear force and bending moment
are determined by the extremum condition of Q and M (see Table 3).

It is evident that the difference between the PUB and SUB is just the ESS. The PUB and SUB are orthogonal
to each other and are shown in Figure 3.

Table 3. Result summary of example II

Quake Internal Product Function 2 22 PUB SUB ESS
Forces

Orc 1.0882(1.362+3.64)/H(z) 2917 | -0917 | 1.587 | 0.499 | 1.088

QOcp 0.8162(1.362+3.64)/H(z) 2917 | 0917 | 1.190 | 0374 | 0.816

_ Mc 3.2647(1.362+3.64)/H(z) 2917 | -0917 | 4761 | 1.497 | 3.264

horizontal | ¢, = 1.333(1.362+3.64)/H(z) 1 | -2677 | 6667 | 0 | 6667

Or (1.36+3.64)/H(z) 1 -2.677 5 0 5

Mz 4(1.362+3.64)H(2) 1 2677 | 20 0 20

Osc 1.0882(0.482-0.48)/H(z) 5813 | 0460 | 0.417 | 0.033 | 0.384

Qcp 0.8162(0.482-0.48)/H(z) 5813 | 0460 | 0313 | 0.025 | 0.288

, Mc 3.2647(0.482-0.48)/H(z) 5813 | 0460 | 1.251 | 0.099 | 1.152

vertical Opr | 1.333(1.362+3.64)(0.482-0.48)/H(z) | -0.395 | 6.781 { 0719 | 0719 | o

Ors (1.362+3.64)(0.482-0.48)/H(z) | 0395 | 6.781 | 0539 | 0539 | o0

Ms 4(1.367+3.64)(0.48-048)/H(z) | 0395 | 6.781 | 2.157 | 2157 | o

H(z) =136z +3.64
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Figure 4. An irregular two-story frame

EXAMPLE III: IRREGULAR TWO-STORY FRAME

The interstory shear force Q of the irregular two-story frame with known stiffness in Figure 4a under a
horizontal floor load X may be solved as

Q, Y U
-4 4fx)
Qa % %

(24)
Let ;=1 and u,=p, then the MPF is
mu, +myu, 2p+1

= = 25
L mul +mu  2p*+1 ()

In the case of Figure 4b, the O-X relation is (24), but the MPF is
p +2

= 26
= p’+2 (26)
In the case of Figure 4c, the MPF is (25), but the Q-X relation is
Q. Y/
=\-¥ 4 { } @7)

Qs‘V‘V

Replacing X; by miuA, the PUB and SUB on the interstory shear force can be obtained by maximizing Q with
respect to p (see Table 4). Again, the difference between the PUB and SUB is just the ESS.



Table 4. Result summary of example I

Figure 4 I;‘L";Z‘: Product Function m p» | PUB | suB | Ess 1\1/:11;:1::
0 2prD)@p+1)/6(2p°+1) | 1.366 | -0.366 | 0.849 | 0.016 | 0.833 | 0.844

@) 0, 2p+D)@p-1)/6(2p%+1) | 3.158 | -0.158 | 1.413 | 0.246 | 1.167 | 1.360
0, 2p+1)Ep+5)6(20%+1) | 0.893 | -0.560 | 2.173 | 0.006 | 2.167 | 2,018

0, (P+2)(p+ )3 +2) 1414 | -1.414 | 0.687 | 0.020 | 0.667 | 0.681

®) 0, +2)2p-DB3EP+2) | 4450 | 0450 | 0.779 | 0.446 | 0.333 | 0428
0, (+2)(2p+5)3(p*+2) | 0.897 | 2.230 | 2.339 | 0.006 | 2.333 | 2.208

0 | o+l 6pelyT2p%+1) | 1.569 | 0319 | 1.039 | 0039 | 1 | 1.017

© 0> Cp+1)@p-112p%+1) | 3.158 | 0158 | 1211 | 0211 | 1 | 1.206
0s 2p+1)(8p+6)7(2p*+1) | 0814 | <0614 | 2020 | 0020 | 2 | 1659

CONCLUSIONS

The PUB and SUB on the bending moment M (similar result applies to the interstory shear forces Q) for high-
rise buildings are

A 7 n n
(MI)PUB =E(J2m1 zmlAh,jz + zm,Ah,,) (28)
j=1 j=i+l j=itl
A n n n
(M) 5y = E(\/Z”‘f 2 m;Ahj = 3 m;Ahy) (29)
j=1 j=i+l j=i+l

where A is the acceleration response spectrum, m; is the lumped mass at story j, and Ahy; is the interstory height
between stories i and j.

Subtracting (29) from (28) yields
(M) pys — (M) 58 =A2mjAhij = (M) gss (30)

J=i+l

Hence, the difference between the PUB and SUB on the interstory shear force and bending moment is just
the ESS.
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