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ABSTRACT

A versatile, nonstationary stochastic ground motion model accounting for the time-variation of both
the intensity and frequency content typical of real earthquake ground motions is formulated and
validated. An extension of the Thomson’s spectrum estimation method based on the prolate spheroidal
sequences and prolate spheroidal wave functions is used to adaptively estimate the evolutionary power
spectral density function of the target ground acceleration record. The parameters of this continuous-
time, analytical, stochastic earthquake model are determined by fitting the analytical evolutionary
power spectral density (psd) function of the model to the target evolutionary psd function estimated
from the target record through an adaptive nonlinear least-squares algorithm. The proposed model is
calibrated against actual earthquake records and validated by comparing the second-order statistics of
traditional ground motion parameters and the probabilistic linear elastic response spectra simulated
using the earthquake mode! with their deterministic counterparts obtained directly from the target
record.
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INTRODUCTION

To account for the random nature of earthquake ground motion time histories, various stochastic
ground motion models, stationary or nonstationary, have been developed and applied over the years.
Several comprehensive review papers (Liu 1969; Ahmadi 1979; Shinozuka 1988; Shinozuka and
Deodatis 1988; Kozin 1988) examine and compare the stochastic earthquake ground motion models
available and provide earthquake engineers with a more solid basis for selecting the appropriate model
for a given situation.

Actual earthquake records exhibit clearly a temporal variation of intensity and frequency content. The
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frequency nonstationarity is due to the different arrival times of the P (Primary or “Push”), S
(Secondary or Shear), and surface (Rayleigh and Love) waves which propagate at different velocities
through the earth crust. Few past studies have shown that the nonstationarity in frequency content of
earthquake ground motions can have a significant effect on the response of both linear and nonlinear
structures (Saragoni & Hart 1974; Yeh & Wen 1990; Papadimitriou 1990). Saragoni and Hart (1974)
developed a fully nonstationary model by juxtaposing time segments of Gamma function modulated
filtered Gaussian white noise with the filter properties varying from segment to segment. Thus, the
frequency content of this model varies as a stepwise function of time. Kubo and Penzien (1979)
proposed a nonstationary earthquake simulation model as the product of a constant intensity process
having time-varying frequency content and a deterministic intensity or envelope function. They
estimated the time-varying frequency characteristics of the target earthquake record using short time
(or moving window) Fourier transforms. Lin and Yong (1987) formulated evolutionary Kanai-Tajimi
earthquake models as convolutions of a nonstationary shot noise process and deterministic Green’s
functions borrowed from one-dimensional wave propagation in linear elastic and visco-elastic media.
Other researchers used simultaneously time and frequency modulating functions to construct a fully
nonstationary earthquake model (Grigoriu et al. 1988; Yeh and Wen 1990). Der Kiureghian and
Crempien (1989) defined an evolutionary earthquake model composed of individually modulated
component stationary (band-limited white noise) processes. Fan and Ahmadi (1990) extended the
original, site-dependent, stationary Kanai-Tajimi earthquake model to account for amplitude and
spectral nonstationarities. Papadimitriou and Beck (1990) produced a parsimonious nonstationary
earthquake model by applying a second-order filter with slowly-varying parameters to a time
modulated white noise. Conte et al. (1992) developed a time-varying ARMA model estimated from
actual earthquake accelerograms using an iterative Kalman filtering procedure. Recently, several
authors have developed fully nonstationary earthquake models using principles of geophysics and
stochastic wave propagation (Deodatis et al. 1990; Zhang et al. 1991). In this paper, a new, versatile,
fully nonstationary, stochastic earthquake model from the family of sigma-oscillatory processes is
proposed and validated.

FORMULATION OF GROUND MOTION MODEL

Oscillatory processes and evolutionary spectral analysis were introduced by Priestley (1965, 1967).
Although this approach has been proven widely applicable, it suffers from some limitations. For
example, the class of oscillatory processes is not closed with respect to the sum of independent
elements, and the coherency of a bivariate oscillatory process turns out to be independent of time
(Battaglia 1979). An attempt to get free of these limitations is presented by Battaglia who introduces
the concept of sigma-oscillatory processes and defines an evolutionary spectral analysis (time-
frequency distribution analysis with a physical frequency parameter) for this kind of processes. A
sigma-oscillatory process, Y(t), is defined as the sum of a finite number of mutually (statistically)
independent oscillatory processes, i.e.,
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in which the component processes {X; (), k=1,2,...,p} are oscillatory processes admitting the
spectral representation
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In the above equation, the bold j denotes J—_] , A t,®) is a frequency-time (deterministic)
modulating function, and the quantities {dZ, ()} denote zero-mean, mutually independent,
orthogonal increment processes having the properties
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where j,k = 1,2,...,p, E[ ] represents the ensemble-average or expectation operator, & ( ) is the
Dirac delta function, and the superposed * denotes the complex conjugate. The spectral representation
in Eq. (2) can be physically interpreted as the limit of a “sum” of sine waves with increasing
frequencies and time-varying random amplitudes {A, {, ®)dZ, (w)}. Each component process X(t)
of the sigma-oscillatory process Y(t) has the following evolutionary spectrum
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with respect to the oscillatory family of functions, 7, = {A, (¢, @)e’™}, which should be viewed as
functions of @ indexed by t. For simplicity, it is assumed that each spectrum is absolutely continuous
with respect to ®. According to Priestley’s definition of oscillatory processes, the modulating function
A, ¢, ®) (viewed as a function of t for each ®) must be such that the modulus of its Fourier
transform H, ®, ®) has an absolute maximum at the origin (i.e., 8 = 0) and
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The mean-square function of the sigma-oscillatory process Y {t) can be expressed as
2 > 2 > 2
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which gives a decomposition over frequency of the “total energy” or variance of Y {t) at time t.
Therefore, the evolutionary (time-varying) power spectrum of Y {t) can be meaningfully defined with

respect to the oscillatory family of functions ¥y = kL=)1 F by
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Notice that the sum of two independent sigma-oscillatory processes remains a sigma-oscillatory
process whose evolutionary spectrum is the sum of the evolutionary spectra of the two individual
processes. Moreover, the characteristic width of the family ¥y, and the characteristic width of the
process Y {t) are defined as
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where B, = [51(1‘)[7_,-:|9||Hk (9,(0)|d9/‘r_’:0|Hk (6,m)|d9} is the characteristic width of ¥, and
By, is the characteristic width of the component process X ) defined as By = su%ka in which
Gy is the class of families #, with respect to which X, () admits the spectral representation in Eq.
(2). If the process Xk (t) is stationary, By is infinite. If By is finite, the nonstationary process
X, ¢t) is termed semi-stationary. The characteristic width is a measure of the nonstationarity of a
process; roughly speaking, 2nB x, °F 2nBy may be interpreted as the maximum time interval over

which X, (t) or Y (t) can be treated as approximately stationary.

Here, the fully nonstationary, stochastic earthquake ground acceleration model, Ijg {t), is defined as a
sum of zero-mean, independent, uniformly modulated Gaussian processes. Each uniformly modulated
process consists of the product of a deterministic time modulating function, A, (t), and a stationary
Gaussian process, S, (t). Therefore, the proposed stochastic earthquake model is a particular sigma-
oscillatory Gaussian process defined as:
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Furthermore, the modified gamma function is used as time modulating function, i.e.,
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where o, and vy, are positive constants, B, is a positive integer, and §, represents the “arrival time”
of the k-th sub-process, X, (); H () denotes the unit step function. The k-th zero-mean stationary



Gaussian process, S, (t), is characterized by its autocorrelation function
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and its power spectral density function
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in which v, and m, are two free parameters representing the frequency bandwidth and predominant
(or central) frequency of the process S, (t), respectively. The stationary processes,
{S t), k=1,2,...,p}, are normalized to a unit variance. According to Eq. (7), the mean square
ground acceleration is given by
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From Eq. (8), the evolutionary power spectral density function of Ug {t) is
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It is worth noting that the ground acceleration process, Ug(t), is not separable, although its
component processes are individually separable (i.e., uniformly modulated). Each uniformly
modulated component process, X, (t), is characterized by a uni-modal power-spectral density function
in the frequency domain and a “uni-modal” mean square function in the time domain. Therefore, each
component process captures the complex time-frequency distribution of the earthquake ground
acceleration in a local time-frequency region.

ESTIMATION OF MODEL PARAMETERS

The parameters of the earthquake ground acceleration model defined above are estimated such that the
analytical evolutionary power spectral density function in Eq. (16) best fits, in the least square sense,
the evolutionary PSD function of the target earthquake accelerogram estimated using the short-time
Thomson’s multiple-window method. Thomson’s spectral estimate enjoys attractive statistical
properties: it is consistent, has high resolution and estimation capacity, and it is not hampered by the
usual trade-off between bias (leakage) and variance (Thomson 1982, Drosopoulous and Haykin 1992).
The details of the parameter estimation procedure are given in (Conte and Peng 1996).

APPLICATION EXAMPLES AND MODEL VALIDATION

The proposed stochastic earthquake model has been applied to several real earthquake records having
different nonstationarity characteristics. One of the applications presented here is the CHAN1: 90 Deg
component of the Loma Prieta earthquake of October 17, 1989, recorded at Capitola site and show in
Fig. 3(a). Fig. | represents the estimated time-varying power spectral density function, é’ﬁgﬁg t, ),
based on the short-time Thomson’s multiple-window spectrum estimation method. It shows how the
frequency content of the target earthquake ground acceleration evolves in time. Fig. 2 portrays the
analytical time-varying power spectral density function, @ ., ¢, ®), of the identified nonstationary
stochastic e

model.

The first level of model validation is performed by simulating a sample of 100 artificial accelerograms



from the identified earthquake model and computing the second-order statistics (i.e., mean and
standard-deviation) of ten ground motion parameters traditionally used to characterize earthquake
intensity. These ground motion parameters include peak ground acceleration (PGA), velocity (PGV),
and displacement (PGD); ratios of peak ground motions, PGV/PGA and PGD/PGA; root-mean-square
acceleration (RMSA), velocity (RMSV), and displacement (RMSD); Arias intensity (AI); and Housner
spectral intensity (SI;) of damping ratio §. In simulating the analytical ground motion model, the
component processes are generated independently using the spectral representation method (Shinozuka
and Jan 1972) and combined to form one realization of the ground acceleration process. The artificial
ground motions simulated are baseline-corrected in the frequency domain by using a simple
rectangular high-pass filter with a cut-off frequency of 0.10 Hz and applying a least-square straight
line fitting to both the integrated ground velocity and displacement records. Table 1 presents the
values of the above ground motion parameters for the target earthquake record and the corresponding
second-order statistics generated from the identified earthquake model. In each case, the statistical
interval defined by “mean * one standard deviation* contains the target parameter except for the
RMSD which is slightly overpredicted by the identified earthquake model. A typical artificial ground
acceleration time history simulated using the identified earthquake model is given in Fig. 3(b). Notice
the strong similarities between the artificial and target accelerograms.

The second level of model validation consists of comparing target linear elastic response spectra with
their probabilistic counterparts generated from the identified earthquake model. Fig. 4 shows the
probabilistic linear elastic true relative displacement response spectrum, (Sp), for a probability of
exceedence of 95%, 70%, 50%, 30%, and 5%. It is observed that the deterministic target response
spectrum falls almost entirely within the (5-95%) statistical range of the probabilistic response
spectrum in the period interval of practical interest from 0.1 to 10 sec. In fact, the target response
spectrum falls between the sample maximum and minimum for the whole period range from 0.01 to
100 sec, except for a very short period segment around 1.08 sec.

CONCLUSIONS

A versatile, fully nonstationary, analytical stochastic earthquake ground motion model based on the
theory of sigma-oscillatory processes is formulated and validated in this paper. First, the time-varying
power spectral density function of the target real earthquake ground acceleration record is estimated
using the short-time Thomson’s multiple-window spectrum estimation method which is consistent, has
high resolution, and is not hampered by the usual trade-off between bias (leakage) and variance. Then,
the stochastic earthquake model corresponding to the target ground motion is built by identifying the
“order” of the model (= number of independent component processes) and estimating the model
parameters through an adaptive nonlinear least-squares algorithm. The parameter estimation procedure
consists of minimizing the L,-norm of the error between the analytical time-varying power spectral
density (PSD) function of the earthquake model and the estimated time-varying PSD function,
subjected to simple inequality constraints. Based on the application examples considered, it is found
that the proposed earthquake model is able to capture very well the temporal variation of both the
intensity and frequency content of real earthquake ground motions. Due to its analytical formulation,
the proposed nonstationary earthquake model can be used for analytical linear (Conte and Peng, 1995)
and nonlinear random vibration studies. This realistic stochastic earthquake model is currently used to
gain better insight into the effects of the temporal variation of the frequency content of earthquake
ground motions on linear and nonlinear structural response.
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Fig. 1. Estimated Time-Varying Power Spectral Density Function for Capitola 1989
Earthquake Ground Acceleration
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Fig. 2. Analytical Time-Varying Power Spectral Density Function of Sigma-Oscillatory
Process Model for Capitola 1989 Earthquake Ground Acceleration
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Fig. 3. Actual and Artificial Ground Acceleration Time Histories of Loma Prieta 1989
Earthquake Recorded at Capitola Site

100%"] Tl LR AL LA | TorTTTTT 7 """Ig
f damping ratio 5% ]

10

Splcm]

o1L

_“I L aaaaal M | 2 el L el
'0001. .1 100
priod [sec]

Fig. 4. Probabilistic Linear Elastic True Relative Displacement Response Spectrum for
Capitola 1989 Earthquake

Table 1. Ground Motion Parameters for Capitola 1989 Earthquake and Statistics from
the Identified Ground Motion Model

Parameter Target | Mean Std C.O.V. | Max Min
PGA [cm/sec’] | 153.92 | 145.93 | 24.38 0.17 | 235.82 | 102.04
PGV [cm/sec] 1211 | 1294 2.98 023 | 24.78 7.63
PGD [cm] 3.14 4.12 1.20 0.29 8.63 2.22
PGV/PGA [sec] 0.08 0.09 0.02 0.19 0.14 0.05
PGD/PGA [sec?] 0.02 0.03 0.01 0.32 0.06 0.01
RMSA [cm/sec?] | 27.50 | 26.65 2.62 0.10 | 35.10( 2221
RMSYV [cm/sec] 2.67 2.85 0.33 0.12 3.93 2.20
RMSD [cm] 0.94 1.44 0.36 0.25 2.48 0.79
Al [cm/sec] 92.24 | 8755 17.60 0.20 | 15037 | 60.22
SIy o5 [cm] 46.96 | 43.17 6.46 0.15| 6l1.14| 31.31




