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ABSTRACT

The purpose of this paper is to study the dynamic behavior of soil ground partially saturated with
water. For this purpose the soil has been assumed to be a continuum mixture with two phases, one solid
phase and one fluid phase, where the solid skeleton is fully saturated with fluid. Following Bowen (1]
for such soil ground the porosity of the fluid, in other words the volume fraction of the fluid phase,
should be considered to be a variable during vibration, especially when one wants to calculate the
seismic responses. Using the mixture theory of continuum mechanics presented by Bowen [1] , the
constitutive laws, the wave attenuation and the wave propagation problems have been discussed.
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Introduction

Soil ground should be substantially considered to be a mixture which consists of solid and fluid in
earthquake engineering. Biot’s theory [2] and [3] is often applied to describe the dynamic behavior
of the soft ground. According to his theory, soil is assumed to be a mixture of elastic skeleton with
void which is fully saturated by pore fluid. Also the porosity, which is the ratio of solid and fluid, is
defined as an important constant parameter. On the other hand, mixture theory has been developed in
continuum mechanics. In this field, Bowen [1] proposed a theory in which the volume fraction has been
treated as an independent variable, which is applicable to the multiphase mixture and is equivalent to
the porosity when the mixture is assumed to be the two phase mixture.

In this paper, Bowen's theory has been utilized to solve earthquake engineering problems, and the
simulation results have been investigated by comparison with Biot’s theory. The mixture is considered
to be a two phase mixture of solid particle and pore fluid, and the porosity (volume fraction) has
been treated a variable which has its own constitutive equation as presented by Bowen [1]. Because
of the relative motion of two different phases and the change of the volume fraction during vibration,
wave propagation in the soil ground attenuates even if each phase is elastic. Such wave attenuation
behaviors have been studied using the characteristic equation, by changing the coefficients related to
the volume fraction. The amplitude of the surface ground containig a porous layer has been presented.



Basic Theory

The volume fraction ¢; is defined as:

Pa(,?) (1)
Ya(2,1)

where p,, 7, represent the mass of the ath constituent per unit volume of the mixture, the mass of the
ath constituent per unit volume of the ath constituent respectively. From the definition, the volume
fractions can be defined as many as the number of the constituents of mixture. However, in this study,
a two phase mixture which is composed of the solid skeleton (soil particle) and fluid {(the pore water) is
focused omn, hereinafter the volume fraction is referred to as the porosity. Thus according to Bowen [1],
the governing equations of the wave propagation of each phase are represented in the following forms:
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where w;,, wy are displacements of solid skeleton and fluid, p,, ps are mass densities of solid skeleton
and fluid, g&}ﬁ, ¢y are initial porosity and porosity, £ is dissipation coefficient, £ = qﬁ}'zpfg/kd, kq is
permeability coefficient, g is gravity acceleration, \,, u, are Lamé constants of the solid, Ay is bulk
modulus of fluid, A,y is bulk modulus of mixture. A; has the physical dimension of the reciprocal time
and determine the characteristic time of the relaxation process. 'y, I'y, @, are the coeflicients related
to the Helmholtz free energy and the porosity. When the terms, I'yGRAD®; and T,GRAD®;, are
eliminated, Biot's equations could be obtained.

Wave Attenuation

It is well known that the dispersion relation due to the interaction between solid and fluid appears in
porous media. Two kinds of P wave are observed, namely P1 and P2 wave. P2 wave is slow and very
highly attenuated. Substituting w,; = C, jexp{i(wt — kz)} into eq.(2), the characteristic equations
to estimate attenuation and phase velocities of P wave eq.(3) and S wave eq.(6) have been derived.
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The nature of the porous media causes attenuation of the body waves, which may be characterized by
the quality factor, @ value. The material properties of numerical examples are shown in Table 1, which
are used in Géli et al [4]. Coefﬁqients Af, Ags are expressed as Kygb}“z, I\}-é}"(l - cb}’) respectively, and
Ky is described Ry = KN, K¢/ (O}LI\'S +(1-— @'}“)I\'f), using bulk modulus of solid I, and fluid Ky

Using the coefficients shown in Tablel. , the Q value has been calculated. The simulated results are
shown in Fig.l. The porosity has been assumed to be 35%, and the permeability coefficient kg is
assumied to be 1.0 and 10.0. In Fig.1, there are four figures, of which the coefficients are shown in the
figures. The horizontal axis is the frequency f and the vertical axis is the @ value. The solid line is



Table 1: Material properties

1. Surface Layer (elastic) 2. Porous Layer 3. Elastic Half Space

Vilm/s) 900 900 3100
Vo(m/s) 1800 1800 5400
pt/m3) 1.72 2.07 2.8
ps(t/m3) 2.65
pr(t/m3) 1.0
K (t/em?) 51
ka(em/s) 1.0,10.0
oF (%) 35

the result from Biot’s theory, and the dot and dot-dashed lines are the results from what shown in the
figures. It is obvious that the Q) values are different, and the change of the porosity attenuates the
wave.

Wave Propagation in Horizontally Layered Ground

In order to analyze the amplitude of the surface ground in frequency domain, the displacement poten-
tials have been introduced as follows.
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Substituting eq.(7) and (8) into eq.(2), the characteristic equations of P1, P2 and S wave are derived.
Based on Motosaka and Ohtsuka [6] and Philippacopoulos [7] . potentials have been defined as,
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where the time factor ™’ is omitted for simplicity and
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As an example of the calculation of the amplitude of the surface, the layered ground shown in Fig.2 has
been used as a model. By use of Haskell method [5] , the amplitude of the surface has been calculated
and are shown in Fig. where the boundary conditions at each interface are assumed in the following.

At the top of the surface layer:

T: =0 T, =0

z L2



1e+06

1e+05

10+04

16403 |

1es02 [

1e+01

1e+00 | /

@ = 100000

1e+06

1e+05

1e+04

10403 |

1e+02

1e+01

1e+00

le-01

i P1

1e-02
1

10 “00 1000
Frequency [Hz]

kg = 10(cm/s), ¢}' = 0.35

—— Biot

— - = A=1000

1e-01 | P2
1e-02 N . R,
1 10 100 1000
Frequency [Hz]
kg = 1(em/s), qS}" =0.35
Ty=235000,T;=0
1e+06 E
1e+05
1e+04.
1e+03 ;-“
16402 |
1e+01
1e+00;
1601 |
1e 02, 10 00 000
Frequency [Hz]
kg = 1(em/s), ¢}L =0.35

Af =100

1e+06

1e+05

16404

T'; = 35000, T, =0

10+03 F-.

1e+02

S
1e+01
16+00

1e-01 |k

1e-02 —— 1
9

®; = 100000, A; =100

10 - 1‘60 10'00
Frequency [Hz]

kq = 10(cm/s), qﬁ}’ = (.35

Af =100

Biot
---------- [=35000, =0
— - — I'=35000, T =15000

Fig. 1: The Q Value



At the top of the porous layer,

Te, =T TH =T, u,=ul. p=0

xre Tz T 2z
At the bottom of the porous layer,
. . b .
T;lt": = sz sz = Tzez ug,z = lu’:'.,z ¢;(U/2 - ’U{) =0
where T, u, p, mean traction, displacement, pore pressure, and supersucript b and e represent bulk

and elastic media, respectively.

The simulation results are shown in Fig.3 with four figures, where the horizontal axis is the frequency
f and the vertical axis is the amplitude. The coefficients of each figure are same as in Fig.1.

It is obvious that the amplitude of the surface while considering the change of the porosity is smaller
compared with that is derived from Biot’s theory. Fig.1 makes it clear that the change of the porosity
attenuates the wave.

pX
+ - 1 = , £UMM
y® 5 Y
porous = A
A’l,zx A X H, =60,80m
B’ B”
Y
elastic A’
B’ : ( 8

Yz

incident wave
Fig. 2: Horizontally layered ground with porous layer

Conclusion

For the purpose solving dynamic problems of ground soil partially saturated with water, constitutive
laws have been presented in which the porosity has been considered to be a variable with an independent
constitutive law. Based on the constitutive laws, the wave attenuation problem and wave propagation
problem have been solved and simulation results have been shown. It is clear that the wave attenuates
if the change of the porosity is taken into account.
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