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REDUCED-ORDER SLIDING MODE CONTROL WITH COMPENSATORS FOR SEISMIC
RESPONSE CONTROL
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ABSTRACT

Recently, it has been demonstrated that control techniques based on sliding mode control (SMC) are robust
and their performances are quite remarkable for applications to active/hybrid control of seismic-excited linear,
nonlinear or hysteretic civil engineering structures. In this paper, sliding mode control methods are further
extended by introducing compensator and different static output feedback controllers. The incorporation of
compensators provides a convenient way of making trade-offs between control efforts and specific response
quantities of the structures through the use of linear quadratic optimal control theory. In addition to full state
feedback controllers, a systematic design of static output feedback controllers using only a few sensors are
presented in this paper to facilitate practical implementations. Since civil engineering structures generally
consist of many degrees of freedom, a controller design using a full-order system may be difficult. Based on
the dominant modes and the retention of selected degrees of freedom of the original structure, a method to
construct a reduced-order structural model is presented. Then, the controller is designed based on the
reduced-order system. It is shown that the performance of the controller using the reduced-order system is
quite close to that of the controller based on the full-order system.
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INTRODUCTION

Recently, various advanced control theories have been investigated for implementations of control systems to
seismic-excited structures, such as H, control [e.g., Dyke, et al 1994, Suhardjo, et al 1994], H_, control
[e.g., Schmitendorf, et al 1994, Jabbari, et al 1995], sliding mode control [e.g., Yang, et al 1994a], etc. In
particular, the theory of sliding mode control (SMC) or variable structure system (VSS) was developed for
robust control of uncertain nonlinear systems. Applications of sliding mode control methods to the following
seismic-excited structures have been studied: (i) linear and nonlinear or hysteretic buildings [Yang, et al
19954, b], and (ii) parametric control, such as the use of active variable dampers (AVD) on bridges [Yang, et
al 1995c] and active variable stiffness (AVS) systems [Yang, et al 1994b]. Continuous sliding mode
controllers that do not have possible chattering effect were presented [e.g., Yang, et al 1995a, b]. In addition



to full state feedback controllers, static output feedback controllers using only a limited number of sensors
installed at strategic locations were also presented in the studies above. Shaking table experimental
verifications of the SMC methods to linear and sliding-isolated building models have been conducted [Yang,
et al 1996a, b]. Based on the numerical simulations and experimental results, it was demonstrated that the
sliding mode control methods are robust and their performances are quite remarkable.

In the previous studies, however, the modulation of the control effort versus response quantities was made
either by adjusting the sliding surface or by specifying the maximum control level (saturated controller). This
paper presents the design of sliding mode controllers by introducing a fixed-order compensator using the
linear quadratic optimal control theory [Yallapragada, et al 1992]. The main advantage of using linear
quadratic optimal control theory with a fixed-order compensator in sliding mode control designs is that a
modulation of response quantities and control effort can be made in a systematic manner for both the full-
state feedback and static output feedback control strategies. Compensators are designed through the LQR
formulation which allows for the modulation of the control forces and specific response quantities in a similar
way as LQR. Since civil engineering structures generally consist of many degrees of freedom, the design of a
controller using a full-order system can be difficult. Based on the dominant modes and the retention of
selected degrees of freedom of the original structure, a method to construct a reduced-order structural model
is presented. Then, the controller is designed based on the reduced-order system. The advantage of the
approach based on the reduced-order system over the modal control is that the observers are not needed.
This is because the state variables of the reduced-order system are identical to selected state variables of the
original structure. It is shown that the performance of the controller using the reduced-order system is very
close to that of the controller based on the full-order system. Numerical simulation results are presented to
demonstrate the applicability and other desirable features of continuous sliding mode control (CSMC) with a
compensator, both for full-order and reduced-order systems.

MATHEMATICAL FORMULATION

The vector equation of motion for a linear elastic structure subjected to a one-dimensional earthquake ground
acceleration Xg(t) can be expressed as

MX(t) + CX(t) + KX(t) = HU(t) + Nk t) (1)
in which X(t) =[x;,X5,,...,X,]° = an n vector with x; being the relative displacement of the i th floor with
respect to the ground; a prime indicates the transpose of either a vector or a matrix; M ,C and K are (nxn)
mass, damping and stiffness matrixes, respectively; U(t) =[u;,u,,...,u, ]’ = a r-control vector; H=a (nxr)
matrix denoting the location of r controllers; and n= an earthquake excitation influence vector. In the state
space, Eq. (1) can be written as

Z(t) = AZ(t)+ BU(t) + E(t) ()
in which Z(t) =[X’(t), X'(t)]’ = a 2n state vector; A =a (2nx2n) system matrix; B = a (2nxr) location matrix;
and E(t)= a 2n excitation vector, given by,

0 I 0 0
A= [—M—_IK _—M‘—IE] ; B= [Mlﬁ:| ; E(Y= [M_lnio(t)] 3
The measured system output y(t) of Eq. (2) is given by
y® = CZ() “

where C is a (mx2n) observation matrix and m is the number of sensors installed on the structure.

Design of Compensator and Sliding Surface

The minimum order of the compensator is (r+1), where r is the number of controllers. For simplicity of
presentation, the state vector q(t) for the compensator is considered to be (r+1), i.e., g=[q;,q51 , where q; is

a scalar and q, is a r-vector. The compensator dynamics is given by



q(t) = Lq(t) + Ny(t) + DU(t) (5)
where L, N and D are appropriate matrices to be determined. The sliding surface is considered a function of
compensator variables, i.e.,

S=Pq(t)=0 (6)
in which P is partitioned into P=[P;,P,]. In the standard form of sliding mode control, P, is generally
chosen to be an identity matrix. However, in the present study, we want the flexibility to choose P,
appropriately. The block diagram for the entire augmented control system is shown in Fig. 1.

For simplicity, the compensator dynamics, Eq.(5), is considered to be in the regular form already, i.e., the first
row of the D matrix is zero. Hence, Eq.(5) and (6) can be written as

q1()=L1;q,(t) +L19,(t) + Nyy(t) @)
Q2 (1) =L31q;()+L7q, () +N,y(0)+D,U(t) 8
S=Piq;(t)+P,q,(t)=0 )]

in which D, is a (rxr) matrix; D=[0, D3]"; N=[N{, N5]’; and L is partitioned into L;, L,,, L,,, and
L,, submatrices. On the sliding surface, $=0, i.c.,

S=Pi4;()+Pyq,(1)=0 (10)
From Eq.(9), one obtains q,(t)=—P5 lqul(t). Substituting Egs. (7)-(9) into Eq.(10), one obtains the so-
called equivalent control, U =U,_ , on the sliding surface,

U, =Gy(t)+Hq, () an

€q

in which
G=—(P,Dy) (PN, +P;N;); H=~(P,D,) 7 [P;(L;; ~L3P5'P)+P,(Ly; — Lo,y P (12)
Also, substitution of Eq.(9) into Eq.(7) leads to

q1(t)=(Ly; ~L1,P5'P)g; (1) + N y(t) (13)
Now, let us introduce an augmented state vector x(t) as
X0 =[Z",q;1 ; =y’ q;T (14)

Then, Eq. (2) and Eqs.(11)-(13) can be cast into a (2n+1) vector equation after neglecting the earthquake
excitation as follows

X(t)=AX(t)+ B U(t) (15)

y(®=c X(t) (16)
in which

"o o Blo 2o g+ s 1]
00 0 1 4 0 1

and Eqgs. (11) and (13) become

Ut) =G y(t) (18)
where

_ TG H

GZ[N1 L11-L12P2_1P1} 1)

For the system equation given by Eq.(15) with the static output vector given by Eq.(16), the gain matrix G in
Eq.(19) can be obtained by minimizing the quadratic performance index

J=E[I: (X'Q X + I—J"Rﬁ)dt} (20)

in which E[ ] denotes the statistical expectation and

__Ql 0 . _Rl 0
Q”[o Qz]’R_[O Rz] @b



where Q; and Q, are state weighting matrices corresponding to Z(t) of the structure and q,(t) of the
compensator, respectively. Similarly, Ry and R, are control weighting matrices corresponding to Ugq and

q; (t), respectively.

Following the optimal output feedback control theory by Levine and Athans (1970), the gain matrix G in
Eq.(19) is obtained by solving the following nonlinear matrix equations

G=-R7!'B’KL¢’ (cLec)™! (22)
ML+LM’+1=0 (23)
KM+MK+Q+¢G'RGec =0 (24)
M=A+BG¢ (25)

Equations (22)-(25) can be solved for G, L, Mand K iteratively as suggested by Srinivasa et al (1979).
Note that when C (or ¢) is full rank, ie., the case of full-state feedback, G and U become,
respectively, G =—R'B’Kc ! and U=-R™'B’KX. It follows from Egs. (24) and (25) that K satisfies the
well-known Riccati matrix equation

KA+AK-KBR'B’K+Q=0 (26)
After the gain matrix G for the augmented system is obtained, parameters for the compensator are
determined as follows. With the partitioning of G, it follows from Eq. (19) that G, H, N, and
L,, =L,;-L,P; 1P1 can be determined. The nonsingular (rxr) matrix D, can be chosen appropriately
through numerical simulations. The scalar P, and (rxr) matrix P, can be chosen arbitrarily. Then, the
submatrix N, is computed from G in Eq. (12). Although L, and L,, are also to be chosen arbitrarily,
they should be chosen such that the augmented open-loop system is stable as will be described later. Finally,
L,, is computed from L, =L;; —L,P; 1P1 whereas L,; is computed from H in Eq. (12).

Design of Controller

A controller is designed to drive the trajectory of the states of the compensator into the sliding surface S = 0
and maintain it there. To achieve this goal, a Lyapunov function V =0.58’S is considered. The sufficient

condition for the sliding mode S = 0 to occuras t — o0 is V<0, i.e.,

V=8'S=8"[Pq;(t) + P,q,(t)] (27
For the design of the sliding surface and compensator described in the previous subsection, the external
excitations to both the structure and compensator are neglected. However, they will be accounted for in the
design of controller. The (r+1) excitation vector to the compensator, denoted by E_(t), is considered as

E.(0)=[0,E,] (28)

in which E;, = r-vector is a subset of the external excitation vector E(t) in Eq. (2), corresponding to the
location of the controllers. In other words, elements of E;, are from the subset of elements of E which
appear in those state equations where the control forces appear. Then, the equations for q,(t), Eq. (8), can
be written as

q2(1)=L;q;(1)+Lyq, () + N, y()+ D, U() +Ey, (29)
Substituting Eqgs. (7) and (29) into Eq. (27), one obtains
V=8'(P,D,)[U(t) - Uy +Mq(t) + D, 7'E 5] (30)
in which U, is given by Eq.(11) and
M, =(B,D,) "' [(BL 1Py P + PLyPy P (BLLy, +PoL50) (31)

for V <0, a possible continuous controller is given by
U(t)=U,, —M.q(1)-(P,D,)'85-D,'E,, (32)



in which § is a (rxr) diagonal matrix with the ith diagonal element §; 20. §; is referred to as the sliding
margin. Substitution of Eq. (32) into Eq. (30) leads to V=-585<0. Note that U,:q has been determined
in Eq. (11).

Stability of Augmented System

The state equation of the entire augmented system, including structure, compensator, and controller, in the
original coordinate form, follows from Egs. (2) and (5) as

X, =AX +B ., UD+E(t) (33)
in which the excitation to the compensator has been included and
X Z-A AO'B—B'E—E(O (34)
°“lq)” "¢ [NC L]’ "¢ [D]” * T |E. )

The controller in preceding subsection stabilizes the closed-loop system of Eq. (33) for any arbitrary choices
of Lj;and L,,. However, the open-loop system A_ may not be stable for any choices of L;,and L,,.

Methods for the determination of L;,and L,, submatrices such that the open-loop augmented system A is

stable are available. The stability of the open-loop system is important to guarantee the stability of the
structure during controller saturation. It has been found that, for any system, the stability of the open-loop
system and the closed-loop system with unsaturated controller are prerequisites for the stability of the closed-
loop system with saturated controller. Due to space limitation, the proof of the above statement will not be
presented.

REDUCED ORDER SYSTEM

Since civil engineering structures, e.g., high-rise buildings, long-span bridges, etc., are generally complex and
consist of excessive degrees of freedom, the dimension of the system matrices in Eq.(2) will be very large. As
a result, the design of a controller, either with full-state or static output feedback, may be quite difficult or
even impossible. Hence, it is desirable to approximate a larger order system by a smaller order system
numerically. One approach is to construct a reduced-order model by retaining only the dominant eigenvalues
and eigenvectors of the full-order system. Since the response of the structure depends heavily on the
dominant eigenvalues and eigenvectors of the system, the response behavior of the reduced-order system will
be close to the original system. In the present study, a method proposed by Davison (1966) has been used to
construct a reduced-order system for the original system in Eq.(2). With zero initial conditions, the solution
of the linear system in Eq. (2) can be expressed as

t
Z(t) = [ TeM=Ir=1[BU(1) +E(1)] dt (35)

0
in which A is the diagonal eigenvalue matrix, and I is the eigenvector matrix. In Eq.(35), the eigenvalues of
the system matrix A are assumed to be distinct, which is generally the case for civil engineering structures.

Denoting I'=[I7, T, .., I',1, r'=s= [S1.85, .., S} ]', and q(t)=BU(1)+E(1), the solution in
Eq.(35) can be written as

Zt)y=& I +&,0,+.. +E T, (36)
where

t
& =[ehiVsq(r) dt 37
0

Let k < n be the total number of complex modes of the original system to be retained in the reduced-order
system. Then, the response state vector Z(t) of the reduced-order system is obtained from Eq.(36) as

-~ k
Z0= 2E, (38)



Without loss of generality, the first m elements of the reduced-order state vector, Z(t) , are chosen to be the

m observations of the system, Eq.(4). Following the mathematical derivations presented by Davison (1966), a
reduced-order system can be constructed by using Eq.(38) as

Z(t) = AZ(t)+ BU(t) +E(t) (39)
where A isa (kxk) reduced-order system matrix, Bisa (kxr) reduced-order controller location matrix, E(t)

is the effective excitation vector for the reduced-order system, and k > m. Detailed descriptions for the
derivation of these matrices and vectors can be found in Wu (1996). To obtain a reduced-order system with
real coefficients, it is necessary to choose even numbers of complex modes, because the open-loop
eigenvalues of a structural system generally occur in complex conjugate pairs.

The controllers for the reduced-order system in Eq.(39) can be designed following the procedures described
in the previous section, including the full-state and static output feedback controllers.

SIMULATION RESULTS

The performance of the proposed sliding mode controller with compensator will be investigated for both the
full-order and reduced-order systems through numerical simulations using a ten-story moment-resisting steel
frame building considered in Shing, et al (1994). The fundamental frequency of the building is 2.59 rad/sec.
The inherent structural damping ratio of the fundamental mode is 5%. A mass damper with a mass equal to
25% of the mass of the 10th floor (2.12% of the total mass of the building) will be installed on the top of the
building. The El Centro NS (1940) earthquake with a peak ground acceleration scaled to 0.3g is used as the
earthquake excitation.

For the structure without a damper, the peak interstory drifts and the peak absolute accelerations for 10 floors
are shown in columns (2) and (3), respectively, of Table 1. Next, the mass damper described above is tuned
to the fundamental frequency of the building and installed on the top of the building. With such a passive
TMD, the peak interstory drifts and the peak absolute accelerations are shown in columns (4) and (5),
respectively, of Table 1. The effect of TMD is obvious by comparing the results between columns (2)-(3) and
(4)-(5). To reduce the response of the building further, an actuator is attached to the TMD, referred to as the
active mass damper (AMD). A continuous sliding mode controller with a compensator (CSMC&C) is
designed first for the full-order structure as follows: Q=diag.[101010101010101010100.0251111 1

111110.0010.001], R=[1.0x10° 1] and 8§=0.. The sliding surface for this case is chosen to be
P=[l, 1]. The elements of the compensator matrix, L, are L;; =-0.0316, L, =10, L,; =—0.968 and

Ly =-1.0. The matrix, D,, for the compensator is selected as D, =1.0. The peak interstory drifts and

the peak absolute accelerations for this case are shown in columns (6) and (7), respectively, of the Table 1. It
is observed from the table that the peak control force and the peak actuator stroke for this case are 295 kN
and 85.60 cm, respectively.

The original building with TMD (or AMD) results in a (22x22) system matrix A. A reduced-order model is
constructed by retaining the 3rd, 6th, 10th and 11th (mass damper) degrees-of-freedom of the original
building. It has been determined from the Fourier spectrum of the El Centro earthquake that three modes of
the original structure are required to be retained in the reduced-order system. A sliding mode controller with
compensator (CSMC&C) is designed for the reduced-order system with Q=[10 10 10 0.001 1 1 1 0.001

0.001]; R=[1.0x10* 1] and 8 =0.1. The sliding surface matrix, P, the matrix D, and the compensator

matrix, L, for this case are the same as the previous case. The peak interstory drifts and the peak absolute
accelerations for this case are shown in columns (8) and (9), respectively, of the Table 1. As observed from
the table, the peak control force and the peak actuator stroke for this case are 266 kN and 84.4 cm,
respectively. It is observed from Table 1 that the performance of the controller based on the reduced-order
system is comparable to that of the controller using the full-order building. Hence, it is much easier to design
the controller for the reduced-order system. Likewise, for the reduced-order system, sensors are installed



only on the selected floors, whereas displacement and velocity sensors should be installed on every floor for
the full-order system.

CONCLUSIONS

The design of continuous sliding mode controller with a fixed-order compensator using the theory of optimal
control has been proposed. In addition to full-state feedback controllers, static output feedback controllers
using only a limited number of sensors are proposed to facilitate practical implementations of the control
systems. The advantages of introducing a compensator in the controller design have been demonstrated
through extensive simulation results. For a tall building involving excessive degrees of freedom, static output
feedback controllers, which require the installation of only a limited number of sensors, are feasible for
practical implementations. However, it may not be easy to design static output feedback controllers for
systems involving hundreds of degrees of freedom because of the high dimensions of system matrices. A
method to construct a reduced-order system model, based on the retention of dominant modes of the original
system, has been presented. Then, the controller is designed based on the reduced-order system. The main
advantage of the control method based on the reduced-order system proposed herein over the modal control
is that observers are not needed. This is because all the state variables of the reduced-order system are
identical to selected state variables of the original structure. Simulation results indicate that the performance
of the controllers designed using the reduced-order system is comparable to that of controllers designed using
the full-order system. The performance of the reduced-order sliding mode controllers with a compensator has
been shown to be quite remarkable.
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Structure
Z(t)= AZ(t)+ BU(t) + E(¥)
y(t) = CZ(¢)

y(®

Continuous Sliding
Mode Controller Y

T30 y®

Compensator

q(t)= Lq(t) + Ny(1) + DU() + E (1)

Fig. 1. Block Diagram of the Structure-Compensator-Continuous
Sliding Mode Controller.

Table 1: Peak Response Quantities of a 10-Story Building Equipped with am Active Mass Damper.

Original Structure Original Structure Full - Order Reduced - Order
with TMD System System
U = 250 kN U =266 kN
Floor No. X; X; X; X; X; X; X; X;
(cm) (cm/sec?) (cm) (cm/sec?) (cm) (cm/sec?) (cm) (cm/sec?)

M) ) 3) €) &) (6) ) ®) ©

1 3.39 271 2.81 270 2.02 271 1.95 261

2 3.40 275 2.82 274 2.06 279 1.93 249

3 3.60 281 2.99 275 2.35 282 2.16 244

4 3.30 278 2.72 266 2.37 271 2.26 262

5 3.86 288 347 264 2.85 224 2.80 263

6 4.68 287 4.10 280 3.05 194 3.05 223

7 5.57 257 4.88 253 3.24 211 3.30 173

8 5.27 260 4.68 242 2.78 213 2.93 173

9 5.21 334 4.67 297 2.64 240 2.83 278

10 3.46 408 3.16 363 2.15 230 1.97 257
Stroke — -—- 53.17 350 85.60 1396 84.40 1198




