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ABSTRACT

Dynamics of a class of horizontal setback buildings with flexible floor diaphragms has been studied by
developing a "separable model." The mass and stiffness matrices of such structures have been written in terms
of direct products of matrices. The separable buildings have two types of natural modes of vibration: (a)
those which involve in-plane floor deformation, and (b) those in which the floors do not undergo in-plane
deformation. Further, spatially-uniform ground motion does not excite the modes involving in-plane floor
deformation. Therefore, the problems associated with diaphragm flexibility, e.g., stress concentration, are
minimal in separable buildings. Most general conditions for a building to be separable have been obtained.
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INTRODUCTION

Past earthquake performance of horizontal setback buildings clearly shows that horizontal setback buildings
are vulnerable to damage caused by in-plane flexibility of the floor diaphragms. Floor diaphragm deformation
causes two difficulties: (a) it alters the lateral load distribution to the vertical elements over what one would
obtain assuming the floors to be rigid in their own plane, and (b) it causes stress concentration at reentrant
corners of the building. It is of interest to study the dynamics of such buildings and to see in what manner the
in-plane floor deformations can be eliminated or minimized.

Maybee et al. (1966) introduced the "separable model" for uniform and regular rectangular multistorey
buildings. This model has now been extended to more general class of rectangular buildings, and to
multistorey buildings with plan shapes such as L, T, U, H, +, or a combination thereof (Jain and Jain, 1993).
This paper summarises the results on setback buildings. The model does not require the horizontal setback
building to have identical wings even though some constraints on mass and stiffness properties are imposed.
Suggestions are made on how to configure horizontal setback buildings so as to make them "separable" and
thereby avoid stress concentration at the re-entrant corners. The technique applied here allows treatment of a
very general class of buildings, as against the rather regular and uniform configurations studied earlier, e.g.,
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Fig. 1. Plan of horizontal setback building (number of wings p = 4)

symmetric V-shaped buildings treated by Jain and Mandal (1992) and symmetric Y-shaped buildings treated
by Jain and Mandal (1995).

BUILDING MODEL

The multistorey building with horizontal setbacks may consist of several wings as shown in Fig. (1). Each
wing may be long and narrow, with a number of transverse frames (or shear walls). Earthquake-induced
vibrations of the building involve longitudinal and transverse motions of each wing. In the analytical model
presented here, the floor is treated as a beam with bending deformation only or with bending and shear
deformations, depending on aspect ratio of the floor. If the resisting elements consist of moment resisting
frames the building is modeled as a grid with beams (representing floors) in the horizontal direction and
frames in the vertical direction. The mass is lumped at the floor-frame intersections. Where building contains
shear walls rather than frames, the walls are also treated as beams (with bending only or with bending and
shear deformations depending on aspect ratio of the wall). Torsional stiffness of the floors and frames is
neglected. It is assumed that: (a) ground motion is uniform at different points at base, i.e., spatially-uniform
ground motion; and (b) there is no torsion component in the ground motion. The building is assumed to be
linear elastic and fixed at the base.

Let the building be of » storeys, with number of wings in the building as p. Also, let the sth wing have (g5-1)
transverse frames. Axial deformation of floors is negligible and width of a wing is usually small. Hence, for
each wing only one displacement per floor in the longitudinal direction needs to be considered. Thus, the
translational degrees of freedom at a given floor of the sth wing will be qs. For dynamic analysis, the
rotational degrees of freedom can be condensed suitably.

The multistorey building studied herein is characterized by the following properties.

(a) The lumped mass matrices of all the floors are proportional to each other; i.e., the mass matrix of ith

floor is M,—ﬂ = Cm,-ﬂ Moﬂ, where Cm,-ﬂ is the mass proportionality constant for the ith floor, and Moﬂ is
the characteristic mass matrix for the floors. The lumped mass matrix for a floor is defined by lumping the

floor and the frame mass at the floor-frame intersections. Define matrix D7 as a diagonal matrix (7 x n) of the

mass proportionality constants (C,,,,-ﬂ ) of the floors.

(b) The stiffness matrices for all the floors are proportional to each other; i.e., the stiffness matrix of the ith
floor is B,-ﬂ = Ck,-ﬂ B, where Ckiﬂ is the stiffness proportionality constant for the ith floor, and B is the



characteristic stiffness matrix for the floors. Define matrix C” as a diagonal matrix (n x n) of the stiffness
proportionality constants (Ck,-ﬂ ) of the floors.
(c) The lumped mass matrices of all the frames are proportional to each other; ie., the mass matrix of jth

frame is M jf’ = ijﬁ' Moﬁ , Where ijﬁ is the mass proportionality constant, and Mofr is the
characteristic mass matrix for the frames.

(d) The stiffness matrices for all the frames are proportional to each other; i.e., the stiffness matrix of jth

frame is A jf’ = ijfr A*, where ij-ﬁ is the stiffness proportionality constant, and A" is the characteristic
stiffness matrix for the frames.

EQUATIONS OF MOTION

Mass matrix (mg;) and stiffness matrix (k) for the sth  wing in its local coordinate system can be
expressed in the direct product (see Appendix) form as follows (Jain and Jain, 1993):

mg :mo(Dsﬁ ®Dﬂ) (1)
kg =C” ®A"+B,®C/ )

Here D/’ ,A*, and C/7 are n x n matrices and are same for all wings of the building. Also, m, is the

characteristic lumped mass, D Sfr is a diagonal matrix (g x gg) containing mass proportionality constants

(ijf’ ) for the frames of wing s, matrix Csf’ is a diagonal matrix (g¢ x ¢g) containing stiffness

proportionality constants (C kjf’ ) for different frames of wing s, and B, is the characteristic stiffness matrix

(g5 x gy) in local coordinates of the floors in wing s.

The mass and stiffness matrices of the wing s are now to be transformed from local coordinate system to the

global coordinate system. Let u si and v si denote the displacement vectors for the ith floor of the sth wing in
the local and global coordinate systems, respectively. These are related such that

uSi =Ryv si 3)

where R; is the transformation matrix. All the floors of the wing have similar degrees of freedom. Hence,
degrees of freedom for the entire sth wing can be transformed from local system (u,) to the global system

(vy)as

u; = (R, ®I,)v; “4)

Where I, is the (# x n) identity matrix. The mass matrix (m ;) and stiffness matrix (k) for the sth wing in
the global coordinate system become

mg = (R, ®L,) my(R,®L,) =m,(R,/ D/ R, @D/ (5)



(c)

Fig. 2. Degrees of freedom in global coordinate system of (a) ith floor of
entire building, (b) ith floor of wing 1, and (c) ith floor of wing 2

ksg = (R; ®In)Tksl Rs®I,) = RsTCsﬁle ®A" +RsTBsRs oc/ (6)

The mass and stiffness matrices for different wings are then assembled to give the overall mass matrix (m)
and stiffness matrix (k) of the building (Fig. 2). Let v’ be the displacement vector for the ith floor of the

entire building. The v’ and v’ vectors are related through the locator matrix L as
i_y o
vy =Lgv (7

Number of rows in Lg is equal to the degrees of freedom of the ith floor of the sth wing, while the number of
columns in Lg is equal to the total degrees of freedom in the typical floor of the entire building. Since all the

floors of the building have identical degrees of freedom, the global coordinates v of the sth wing are related
with the global coordinates (v) of the entire building as

Vs = (Ls ® In) v 3

Mass and stiffness matrix of the entire building can then be assembled as

pP P
m= 2 (L ®1,) myg (Ly ®1,) = mp( zlLsTRsTDsf’ R,L,)®D” ©)
5= S=
or, m=m, (Dfr ®Dﬂ) (10)
/4 T
k=% (L;®I,) ksg(Ls®In) (11)

s=1



4 p
or, k=(XL,/RJC/R,L)®A" +(ZL,/R,BR,L,)®C” (12)

s=1 s=1
or, k=(C"®A"+B*'0C/)) (13)
Where
p
p” = LR, DR, (14)
s=1
P
¢/ = LR,/ R,L; (15)
s=1
« P77
B =YL, R;BR/L; (16)

s=1

The eigen value problem of the entire building may now be written as

" A" +B* @ yv =m0’ (DF @D )v 17

Where o is the natural frequency and v is the mode shape of the entire building.

EIGEN VALUE SOLUTION

Consider the case when (a) the stiffness and mass proportionality constants for the frames become
proportional

D/ =cfcF (18)
and also (b) the stiffness and mass proportionality constants for the floors become proportional

p/ =c/¢c” (19)

Physical significance of conditions (18) and (19) is that the natural frequencies of all the frames, with
appropriate lumped mass, must be the same; and the natural frequencies of all the floors in the building must
be the same. Further, if the mass matrix of any frame and the stiffness matrix for the same frame are taken as

the characteristic mass and stiffness matrices for the frames, the value of ¢ will be unity. Similarly, if mass
and stiffness matrices of the same floor are taken as the characteristic mass and stiffness matrices for the

floors, then the value of /M will be unity. This is assumed in all further discussions.

It turns out that under the conditions (18) and (19), the building becomes separable; i.e., the eigenvalue
solution of the entire building can be obtained from the eigenvalue solution of a typical floor and of a typical
frame. For instance, the eigenvalue problem for a typical frame and a typical floor can be formulated as

A'T=m,2C’T (20)
B'S=m,c*C”s 1)



Here, T and & are the natural frequency of the frame and the floor, respectively. Similarly, T and S are the
corresponding mode shapes of the frame and the floor, respectively. Substitution of v=S®T into Eq. (17)
and application of Eqs. (20) and (21) shows that the building is indeed separable, and that the natural
frequencies and mode shapes of the entire building are given by

o’ =c*+7 (22)
v=S®T (23)

Thus, when these conditions are satisfied the building may be treated as a separable building. Frequencies of
the separable building are simply the square roots of all the possible sums of the square of the frequencies of
the typical floor and the square of the frequencies of the typical frame. Similarly, the eigenvectors are the
tensor product of the eigenvectors of the typical floor and the eigenvectors of the typical frame.

MODAL PARTICIPATION FACTORS

Since the floors have free-free boundary conditions, the first two floor modes consist of rigid body translation
and rigid body rotation with zero natural frequency. Thus, the first mode of the floors is a unit vector

S; =1 (24)

By orthogonality condition on floor modes,

s’/ 1=0 m#1 (25)
Let the combination of mth floor mode and nth frame mode be termed as mnth mode of the building, i.e.,
Vo =8, T (26)

The modal participation factor for spatially uniform ground motion is

Bun = e 27

T
V. MVin

Consider the numerator

vl m1=m,(S,®T,)" @ ep') sy (28)
=m,(S,,' D D& (T," D 1) 29)
=0 when m=1 (30)

Thus, the participation factor is zero for all modes other then those involving rigid body translation of floors.
Hence, under the stipulated conditions, the modes of vibrations involving in-plane floor vibrations are not
excited by ground motion.

CONCLUSIONS

It is found that for a building to become "separable”, it must satisfy the following conditions: (a) the lumped
mass matrices of the floors must be proportional; (b) the lumped mass matrices of the frames must be
proportional, (c) the stiffness matrices of the floors must be proportional, (d) the lateral stiffness matrices of



the frames must be proportional, (€) the ratio of stiffness and mass proportionality constants for all the floors
must be the same, and (f) the ratio of stiffness and mass proportionality constants for all the frames must be
the same. While considering the lumped mass matrices for the frames and the floors, both the frame and the
floor mass is lumped at the floor-frame intersections. Such a buildings have two types of natural modes of
vibration: (a) those which involve in-plane floor deformation, and (b) those in which the floors do not
undergo in-plane deformation. Further, spatially-uniform ground motion does not excite the modes involving
in-plane floor deformation.

Given a plan configuration of a building from architectural considerations, the structural engineer can adjust
the stiffness properties of the floors and the frames to make the building separable (or as nearly separable as
possible). This will avoid, or minimize, the problems associated with the in-plane floor deformations. This is a
much better solution over providing separation joints between different wings of the building. Separation
joints spoil aesthetics of a building, are leaky, and make the building prone to damage due to pounding
between the adjacent wings.
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APPENDIX: DIRECT PRODUCT OF MATRICES

Let A and B be rectangular matrices of order (» x ¢) and (r x s), respectively. The direct product, also

termed as Kronecker product or tensor product, A ® B of A and B is the rectangular matrix of order (pr x
gs) defined by (Halmos, 1958, Lynch et al., 1964)

—a,,B a,B . . a,qB_

a,B a,B . . a,B
AQB=

a,B a,B . . a,B |

Each element a,B is the product of the scalar a; with the matrix B. There are no restrictions on the sizes of
matrices A and B. Some of the formal rules of operating with direct products are as follows

1®91=1
(A+C)®B=A®B+C®B



(A®B)(C®D)= AC®BD
(A ®B)(C®D)(E®F) = ACE®BDF

(A®B) =A"®B’

In the above equations 1 is a unity matrix,



