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IMPULSE FUNCTION OF DYNAMIC STIFFNESS OF SOIL
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ABSTRACT

The impulse function of dynamic stiffness of soil and its convolution integral are calculated to evaluate the
dynamic interaction forces between soil and structures in time domain. This paper formulates three kinds of
convolution representation for the dynamic interaction force and the related transform rules with causality.
Finally a new method to express the impulse function is presented by using a discrete Hilbert transform and
the causal inverse fast Fourier transform together with the complex exponential algorithm.
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INTRODUCTION

The impulse function of the dynamic stiffness of soil is used in the time domain analysis of soil-structure
interaction (Wolf and Obernhuber, 1985; Wolf and Darbre, 1986; Wijeyewickrema and Keer, 1987; Wolf
and Motosaka, 1989). This paper presents a method to obtain the analytical representation for the impulse
function. The dynamic stiffness of soil is generally obtained by numerical analysis such as the boundary
integral equation method or its hybrid method with the finite element method. The dynamic stiffness can be
decomposed into the regular and the singular parts in the three types (Yoshida et al, 1986; Hayashi and
Katukura, 1990). The singular part is independent from frequency, evaluated at the frequency of zero or
infinity so that the regular part which is varied with the frequency may be gradually decreased to zero at
infinity. If the real part of the dynamic stiffness could not be obtained, the real part of the regular part is
approximately calculated from its imaginary part in frequency domain (Yoshida et al, 1986) in order to
satisfy the causality by using a discrete Hilbert transform (Simon and Tomlinson, 1984).

Applying the causal inverse fast Fourier transform (Hayashi and Katukura, 1990) to this real part, the
impulse function of the dynamic stiffness of soil is obtained as a large amount of data on the time axis. This



requires a huge memory size, and so makes it difficult to calculate the convolution integrals representing the
interaction force by a small computer. The impulse data is replaced to a series of analytical functions
approximately by using the complex exponential algorithm which is the curve-fitting technique based on
Prony’s method (Brown et al, 1979) and also by using a generalized inverse technique. The obtained
impulse functions strictly satisfy the causality and are perfectly stable. The number of numerical factors
contained in the exponential functions and their amplitude is quite a few. Therefore, this method makes it
easy to calculate the convolution integrals in high speed and to reduce the storage of information on the
impulse function compared with the ordinary inverse fast Fourier transform. Finally numerical results for a
simple model are shown and the validity of the proposed method is examined.

DYNAMIC SUB-STRUCTURE METHOD IN TIME DOMAIN

The equations of motion for the inner field V, containing the structures (Fig.1) can be discretized by the
numerical method such as the finite element method as follows:

[[Mss] [MSB]]{{ﬁs(t)}}+|:[CSS] [CSB]]{{us(t)}}_i_[[Kss] [Kss]]{{us(t)}} ={ {0} } )
(M) (M1l {iis(0)}] | [Cas] [Copl[[{t()}] | [Kps] [Kpsl|U{up(0)}] | —{R(D)}

in which {u} and {R} denote the displacement vector and the dynamic interaction force vector in time
domain on the pseudo boundary surface S, respectively.

Frec ficld V. Outer field ¥,

Fig.1 Substructure model
{R(r)} is represented by the inverse Fourier transform or the convolution integral using the dynamic stiffness

matrix [S] obtained by the boundary integral equation method or the transmitting boundary representation as
follows:

(R®) =3[~ [S@}u@)e™ do = [[[S( - D u(0)dz @

in which {u} denotes the relative displacements from the free motion {u3} in the outer field V,,

{u(@)} = {up(@)} - {uz(@)}. 3

The free surface condition on S, in the outer field V,, is given by

(PE(@)} = {ph (@)} + [S@)){u§ (@)} — {uj(@)}) =0 @)
or



in which {p} is the surface traction and the super suffix f denotes the free field with no structures.
From all of the above equations, the fundamental equations in the dynamic sub-structure method are formulated:
[M] [MSB]]{{IZS(I)}} . [[Css] [Csg] ]{{ds(t) }} N [[Kss] [Kss] ]{{us(t) }}
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[S(®)] can be decomposed into the regular and the singular parts in the three following ways:
[S(@)] =[S 1+[S/ (@](iw)™" :1=12,3 M
where
[S(@)]= [k()] + iwfc(®)],

[Sr1=[k"1+iw[c"] : singular part,
LS (@)1= [k"(w)] +iw[c (@)] : regular part.

Table 1. Regular and singular parts of [S(®)]

1=1 1=2 1=3
[«] k=) )] [«()]
'] [e(>)] [e()] [<(0)]

@) K-k o) KO

[c’ (0)] [c(@)]-[e(=)] [x@)] —z[k(w)] [«(0)] _2[" (@)]

Each element of [S;'] and [S, (®)] is shown in Table 1.

Substituting equation (7) in equation (2) leads to

-1

(RO} = K"V u(t)} + [c"]di{u(t)} +f 87— 1 {u(m) ) d. ®
t 0 dt

CAUSAL INVERSE FOURIER TRANSFORM

Causality

If the impulse function of the regular part is real and satisfies the causality ([S,’ (t<0)]= 0), both [k (@)] and
[¢" ()] satisfy the equations
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known as the Hilbert transform where Pj denotes the principal value of the integral.

In this case [S; (#)] can be expressed only by [k"(@)] or [¢"(@)] in the following form
-, l r iot l r iwr
MO —Z;L“[S' (@)]e'” dw = 4U(t) - RC[E;Jo [k (w)]e da)]
=4U(1)- Re[—;;f: ia)[c'(w)]ei“"dw] an

where U(t)=1 (t>0), 0 (t<0) denotes the step function. The equations above are called the causal
Fourier transform.

Causal Inverse Fast Fourier Transform (CIFFT)

Equations (11) can be evaluated at a series of discrete points ¢, = mAT(m=0,1,---,N/2) as

Si(t,)= * Re lk'(O) + Nf}c'( i Aw)e' PN 4 lk’(ﬁ Aw)e'™ (12)
= NAT |2 =" 2" 2
2r 2=z . . .
where Aw = T = NAT A set of data produced by adding N/2 —1 zeros to the discrete values in equation
(12)
4 k (0), k' (Aw), - —k (ﬁAa)) 0, 0
NAT 2 W

makes it possible to apply the fast Fourier transform algorithm to equations (11). This procedure is called
the causal inverse fast Fourier transform (CIFFT) (Hayashi and Katukura, 1990).

Modified CIFFT

Two correction terms A,(t), Ag(¢) can be introduced to equations (11) corresponding with the inverse
Fourier transform integral over @, (= NA®/2) <|@| < o:

S/(1)=4U(r)- Re[% [ k’(w)e‘“”da)] + A1) =4U(r)- Re[al-fg ["io- c'(a;)e‘“"dw] +AL(D).  (13)

If k" (w) and @ - ¢’ (w) could be approximately written by the asymptotic form

r 2
k(w)= w_k(_w_) w.cr(w)=w (14)



in |0|> @,, the correction terms become

1
27

AR(t)=4U(t)[ wfc’(w,,)-si(wnt)], A,(t)=4U(z)[—217;wnk'(wn){sinwnt+w,,t-si(a),,t)}] (15)

where si is the sine integral.

Disrete Hilbert Transform (DHT)

If ¢'(w) is defined at n points @,, -+, @,, the discrete form of equation (9) is then
2 & wc(w)
K(w)=—-—Y —*——FAw 16
(@)=-— ; g (16)
(k=)

in which Aw = w, — @,_, (Simon and Tomlinson, 1984).

Modified DHT

The correction term corresponding to equation (14) can be added to the discrete Hilbert transform (16):

2 & 0 -d(@)
Kw)=-—) *—"-* A+ B, (0, 17
(@) nz g () (17
(k#j)
in which
wc (@) @ o, -0,
BR(wj)=—"3M~—i-log = (0<o,<w,) (18.2)
r o, O, + 0,
w.c(w 2w
_0,c( n)_(_ ) (@, =0) (18.b)
/1 w,

and @, =, +%Aa).

COMPLEX EXPONENTIAL ALGORITHM

The regular part of the dynamic stiffness of soil S/ (@) can be approximately expressed in a partial-fraction
expansion of the form

< D D, < C
s = k k k
(@) Z{(iw—lk+ ]+Z (19)

i(l)—/l;c k=1 i(D+’}’k

where 7, is real and 4, is the conjugate of a complex number A, = -, +iw,. Applying the inverse Fourier
transform results in

Ny

Ny
S (1) = 2Re{2 DkXI:n} + zCkYkm
k=1 k=1



N, N,
= Z(Ak e P cos@,mAT + B, e ™" sin wkmAT) +Y Ce (20)

k=1 k=1

with X, = e A9y = ¢ and A, =2Re[D,], B, =—2Im[D,].

The polynomial of n(=2N, + N,)th order with the roots X,, X,, Y, is defined as

N,
o, X" +a, X" +- +a,X+aO-HX X)(Xx- X)H @1

k=1 k=1

where o, =1. Multiplying the both sides of equation (20) by «,, and adding it from m =0 to n leads to

S, )+ZS’(t )-a,, —ZRC{ZD (Za x"')}+2c (mZa Y"') (22)

m=0 m=0

Considering equation (21) results in
n—1
D S(t)-a, =-S5/ (,). (23)
m=0

To determine coefficients a,, p(>>n) linear equations for nunknowns are constructed by using p sets of
n discrete points each starting from one delayed point as shown in Fig.2. They can be solved by a
generalized inverse technique based on the singular value decomposition. X,, ¥, and A, B,, C, are
obtained by equation (21) and (20) respectively. This method is called Complex Exponential Algorithm
(CEA) (Brown et al, 1979) which makes it possible to represent the data of time history by a linear
combination of stably dumped harmonic functions.
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p—1 n+p-1
Fig.2 Discrete data in time domain
NUMERICAL EXAMPLE

The semi-infinite rod with exponentially increasing section area (Wolf and Obernhuber, 1985) is considered
as the numerical example (Fig.3). The dynamic stiffness of the vertical translation at the top is written as
follows:



1 o E
éS(ao)=—2—(l+1/1—4a§) ca=2 = £ (24)

where E is the Young's modulus, p is the mass density.

Figure 4 shows the impulse function calculated by using equations (13) and (17). Dots denote the exact
solution:

S oS L (1
S/ (1) I; ZTJ'

=G
EA, 2) P T=—-t 25

f

where J, is the Bessel function of the first kind and of the first order. Both of numerical and exact results
have a good agreement.
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Fig.5 Real part (a) and imaginary part (b) of dynamic stiffness in frequency domain by Im[S; (a,)]

Figures 5(a) and 5(b) are the numerical results of k(@) and c(@) evaluated from equation (19) by CEA
method (n=10). Figure 6 shows the impulse function of regular part of the dynamic stiffness evaluated by
CEA method. Next when the constrained step displacement is given as follows:

_[7*6-1) T<2
“(T)'{ 4 2<7 20

the dynamic interaction force R(7) is calculated by equation (8) and compared with the exact solution in Fig.
7. One can find out that the numerical results by CEA method in these figures can well approximate each



exact solution respectively.
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Fig.6 Identification of impulse function of regular Fig.7 Dynamic interaction force under step
part of dynamic stiffness by Im[S] (a,)] displacement
CONCLUDING REMARKS

The modified CIFFT to obtain the impulse function of the dynamic stiffness of soil has been presented. This
method becomes more effective to be combined with the modified DHT when the impulse function has to be
calculated from the imaginary part of the dynamic stiffness. The obtained data in time history can be
expressed by the linear combination of stably dumped harmonic functions by using the CEA method. This
method can reduce the storage requirement compared with the ordinarily used FFT.
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