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ABSTRACT

Methodologies for earthquake ground motion modeling based on random process and random vibration
theory have heretofore not accounted for the inherent variability of the ordinates of Fourier amplitude
spectra, peak motion amplitudes and response spectra stemming from the limited duration of motion.
We show herein that a major component of the variability of peak ground motion amplitudes, which can
also explain observed fluctuations of response spectra, is analytically tractable in terms of the square
of the ground motion spectral density function G(w) and the duration of strong shaking so. Data from
dense arrays indicates that this component of the uncertainty of ground motion parameter also reflects
the inherent spatial variability of ground motion parameters at different locations within a region, called
a “local field”, in which ground motion properties are nominally the same and to which one might assign
a (single) Mercalli Intensity after an earthquake.
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INTRODUCTION

It seems fitting, in this Symposium honoring Emilio Rosenblueth, with before me the task of speculating
about future developments of random process and random field theory in earthquake engineering, to
briefly quote from his comments (Rosenblueth 1977) about questions as to the appropriate degree of
sophistication in probabilistic modeling: ” The first time you hear Schoenberg you do not like his music.
The 17th time maybe, maybe you appreciate it if you have studied it. Answers to our questions hinge on
the familiarity of those who are to define design earthquakes with probability theory.” From which you
might infer he thought studying random fields is not unlike listening to Schoenberg. But arguing that
strong medicine may be good for us (and the profession), he wrote (Rosenblueth 1985): ”The simpler
the approach the more we sacrifice optimality of the ensuing design”, bringing to mind Einstein’s
famous dictum about theoretical models: ” A model should be as simple as possible, but not simpler.”
Emilio Rosenblueth often stressed the imperative of incorporating probabilistic theory in a framework
of engineering decision making, as exemplified by this (1985) quote: ”Today the literature blooms



with methods for computing reliabilities ever more accurately and efficiently. Bless the literature!
Yet we shall remain stranded until we build that fiext span of the bridge, the span that tells for
which reliabilities we ought to design.” The random field approach to describing loads on structures
corresponds to “Level 4” in Rosenblueth’s ranking of methodologies according to complexity, where
“Level 17, in elementary safety assessment, treats load and resistance as deterministic quantities (using
point estimates); “Level 2” as semi-probabilistic in terms of their point estimates and coefficients of
variation; and “Level 3” as statistically independent random variables.

DIRECT STOCHASTIC REPRESENTATION OF GROUND MOTION

We first reassess the rationale for the direct stochastic representation of earthquake ground motions
in terms of their one-sided (w > 0) spectral density function G(w) and the duration of strong ground
motion so (Vanmarcke 1976, 1986; Vanmarcke & Lai 1980), according to which strong-motion accelero-
grams are idealized as limited-duration segments—in effect, “sample functions”—of stationary Gaussian
random processes with s.d.f. G(w). This simple representation can of course be extended, most notably
by expressing how the ground motion’s frequency content evolves with time, but the simple model
suffices (and is preferable) for the purpose of introducing the new theory about fluctuations of response
spectra and its relation to the local spatial variation of ground motion parameters.

Limitations of Response Spectra

The most common representation of earthquake ground motion for seismic analysis and design is in
terms of response spectra, plots of maximum seismic response of a simple linear oscillator versus natural
frequency w, for different damping ratios ¢. They permit the designer to assess the severity of ground
shaking directly in terms of the response of different alternative (simple linear) systems. They reflect
the frequency content and the duration of the ground motion, as well as the way the motion is filtered by
a single-degree linear oscillator, but their value may be much reduced when the system of interest does
not act as a simple linear oscillator. For linear multi-degree systems, one resorts to approximate rules
of modal combination of response spectra ordinates at the different modal frequencies. Since the time
interval during which strong ground shaking lasts is not explicitly accounted for, phenomena sensitive
to motion duration tend to be poorly predicted by procedures based directly on response spectra, e.g.,
when inelastic action, low-cycle fatigue or soil failure due to liquefaction dominate behavior. And it
may be cumbersome to modify response spectra where local soil effects or local spatial variation of
earthquake ground motion need to be accounted for.

Further complications arise owing to the fact that, in design situations, seismic analysis typically pro-
ceeds based on ”design” response spectra which, in a sense, are envelopes of response spectra corre-
sponding to different types of potential ground motions (with different magnitudes and distances, and
hence durations and spectral parameters). An unknown degree of conservatism enters into the analysis
of multi-degree linear systems when the modal ordinates of ” design” response spectra, unlikely to occur
simultaneously, are combined. Another significant weakness stems from the fact that the maximum
ground acceleration—the ”zero-period” acceleration—is widely used as scaling factor for acceleration
time histories and response spectra. This has led to the development of ”standard” response spectra
shapes, obtained from statistical analysis of a suite of recorded accelerograms scaled to a common
maximum acceleration. It is well known, however, that the maximum acceleration is a somewhat unre-
liable indicator of ground motion severity for many kinds of systems, as it is highly sensitive to (poorly
predictable details of) the high frequency content of ground motions.



Simple Stochastic Representation of Earthquake Ground Motion “at a Point”

In light of the limitations just mentioned, a strong case can be made for the direct stochastic representa-
tion of earthquake ground motion, in terms of the spectral density function of the ground motion G(w)
and the duration of strong shaking so. While essentially equivalent to response spectra in reference to
single-degree linear systems, it leads to improved predictions of the response of linear multi-degree sys-
tems and the behavior of a variety of nonlinear systems, including those sensitive to low cycle fatigue and
liquefaction. It also provides a tractable format for: dealing with the effect of local spatial variation of
ground motion; accounting for the influence of local geology; relating ground motion frequency content
(and duration) to basic earthquake source parameters and source-to-site distance; performing “overall”
seismic safety analysis, incorporating both seismicity and vulnerability of structures; and simulating
sets of ”time histories” suitable for use in seismic analysis and design. The information about spectral
density functions comes from: (a) recorded accelerograms, including sets of records at accelerograph-
array stations; (b) geophysical models (e.g., the Brune and related source spectra, which, combined
with information about how the different sinusoidal components of source spectra decay with distance,
yield spectral densities of ground motion at bedrock outcropping); (c) information about local geology,
enabling filtering of the bedrock motion; and (d) inverting known or specified smooth site response
spectra (using random vibration theory).

Local Fields of Ground Motion

Short-range spatial variation of ground motion is of interest to engineers and seismologists alike, but
their perspectives differ. Seismologists seek to describe seismic wave composition, polarization, and
source and path properties, while engineering interest lies in what is needed for response prediction,
namely information about the energy-rich strong-motion phase which is often dominated by relatively
high frequency components. Studies on spatial variation of ground motion aim to understand, describe
and predict the local variability of ground motion parameters and local damage patterns. Such variation
may be important in the design of structures with wide foundations such as dams, tall offshore structures,
or nuclear plant facilities; structures with widely-spaced multiple supports such as bridges; and all kinds
of "lifelines” carrying oil, gas, water, or traffic. A related critical question is how well a single (recorded)
time history represents the ground motion at points in its vicinity.

The term "local field”, as used herein, refers to surface areas that are small enough so that the (internal)
variation of motion amplitudes as predicted by (epicentral-distance-dependent) attenuation laws, is
negligible; specifically, within the confines of a "local field”, peak accelerations estimated in function of
magnitude and distance differ negligibly compared to the differences in peak accelerations as measured
by an (actual or hypothetical) dense array of strong-motion accelerographs; the latter may differ by
factors of 2 and more, even when separation distances are of the order of tens of meters. Each "local
field” exists in a particular seismic setting, characterized by faults or other seismogenic zones, and the
seismic threat at the extended site—the “local field”—can be assessed by means of standard (site)
seismic risk analysis.

Empirical data about spatial variation comes from dense arrays of strong motion accelerographs covering
areas with typical dimensions ranging from several meters to several kilometers. The first productive
accelerograph array was the SMART-1 array located in Lotung, Taiwan (Bolt et al. 1982). The array
proper, consisting of 37 instruments synchronously measuring three ground acceleration components,
has recorded many earthquakes generating array-site ground motion levels severe enough to damage
structures. Array recordings of a seismic event may be thought of as incomplete observations of a space-
time random field, with partially predictable phase lags; the "aligned” motions—from the time lags
owing to wave-front propagation have been subtracted—are assumed to be ” locally” homogeneous and
isotropic during the strong motion phase (Harichandran & Vanmarcke 1986; Boissiéres & Vanmarcke
1995 a, b). But even without “aligning” the motions, one can construct histograms and compute
measures of dispersion for ground motion parameters such peak amplitudes, Arias intensity, Fourier
amplitude spectra, and strong-motion durations; the width of the histograms depends on magnitude



and distance and local geological conditions, as well as, to some extent, on the surface area covered by
the accelerographs and the layout of the array.

Stochastic Seismic Analysis of Linear Systems

Based on the simple stochastic representation of the seismic input—sudden exposure, for an interval
of sg seconds, to stationary Gaussian excitation with given spectral density function G(w)—random
vibration provides approximate closed-form predictions (fractiles of the distribution) of seismic response
of one-degree and multi-degree linear systems. In particular, the peak one-degree system response Y.,
can be expressed as a product of two factors: the response standard deviation oy (evaluated at time
t = so after the onset of vibration) and the dimensionless peak factor R, which may be thought of as a
random variable or its fractile for probability of exceedance p; choosing p = 0.5 thus yields the median
maximum response. The same basic format can be used to predict peak amplitudes of ground motion,
such as the peak ground acceleration: A,,,, = o4 x R, where 04 is the strong-motion-acceleration
standard deviation (the square root of the variance 0%) and R is the peak factor. The methodology
also enables prediction of linear-multi-degree-system response, with the form of the expression for
the multi-degree-system response variance leading to improved rules for modal combination in the
(deterministic) response spectrum approach; it suffices to replace the modal standard deviations by the
response spectra coordinates. Vanmarcke (1976) outlined a "stochastic modal superposition” (SMS)
procedure that fully accounts for cross-correlation between modal responses, as well as for the transient
nature of lightly-damped seismic response and secondary effects due to differences in the peak factors
of multi- and single-degree responses. For a historical account of this and other modal combination
rules, and references to recent extensions to linear multi-support, multi-input structures, see Heredia &
Vanmarcke (1995).

NEW PERSPECTIVES ON THE VARIABILITY OF GROUND MOTION AND RESPONSE

In the methodology just mentioned, maximum amplitudes of ground motion or response are predicted
by multiplying a non-random “standard deviation” oy by a chosen fractile of a random peak factor R.
We will now make the case that the standard deviation oy, or the corresponding variance 0%, is itself
inherently random when the time history is seen as a relatively short “sample function” of a stationary
random process with known spectral density function Gy (w). Sample spectral density functions possess
inherent variability that translates into inherent variability of excitation and response statistics. This
brings to stochastic seimic analysis a heretofore unaccounted-for source of uncertainty. Theoretical
backup and analytical tools for analyzing it are provided by statistical theory of (stationary) random
functions, while empirical support for the findings comes from processing of accelerograms recorded
during a number of seismic events at dense-accelerograph-array sites. We present herein some typical
results pertaining two events recorded by the SMART1 array.

“Sample Spectra” as Random Functions of Frequency

The sample spectral density function of a stationary random process X (t) may be defined as follows
(Parzen 1962):

30 2
/0 exp(—iwt) X (t)dt| , 0 <w < oo, 1)

A 1
G(W) = ;l'?o

where s is the length of the sampling interval and, in the application to strong ground motion modeling,
the “duration of strong ground shaking”. G(w) is the Fourier transform of the sample covariance function
B(1), an even function which for positive values of the “lag” T can be expressed as
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which is close to the “true mean”, m = 0, in case X(t) represents earthquake ground motion or the
seismic response of linear systems. The “sample variance” of X(t), denoted by 62, can be variously
expressed as
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The appearance of raw sample spectra, characterized by erratic fluctuations, suggests that G(w) can
itself be interpreted as a one-dimensional random function of the continuous parameter w (Vanma.rcke
1983; p. 341). In particular, as Figure 1 indicates, the frequency-dependent random process G(w) is
stationary when X(t) is ideal white noise, and is weakly non-stationary for wide-band spectral density
functions typical of earthquake ground acceleration.

G(w) A

FIGURE 1

Basic Statistics of Sample Spectra. The marginal statistics of G (w) are given in the literature on spectral
estimation (Jenkins 1961). For Gaussian processes X (t) and relatively long sampling intervals sy, G(w)
is approximately exponentially distributed with mean

me = B [G@)] = Glw), (5)
and variance
o4 = Var [Gw)] = G*(w). (6)

Hence, the mean and the standard deviation of the sample s.d.f. are equal, so their quotient, the
coefficient of variation, is one:

Vo) = 96w/ Méw) = 1- (M)

The high positive skewness of G’(w) is consistent with the high peaks seen in squared Fourier amplitude
spectra of typical ground acceleration records. It is also known that, in the limit when so — oo, G(w;)
and G (w7) associated with a pair of adjacent frequencies w; and w, are uncorrelated. For sample—functlon
segments with finite duration, however, the scale of fluctuation of G(w)—the “correlation distance” in
the frequency domam—vames inversely with so, namely (Vanmarcke 1983)

QG = 27!'/30, (8)

When sy — 00, Qg — 0 and the frequency-dependent process becomes truly uncorrelated, but for finite
record lengths one expects there to be positive correlation between spectral ordinates at frequencies

separated by less than {}g. For earthquake records, a typical strong-motion duration is so = 10sec,
giving Qg = 27/10 =~ 0.628 cps or 0.1Hz.)



Variability of Sample Spectral Densities at Array Sites

When a dense array of accelerographs—such as SMART1—is triggered during a seismic event, many
three-component records are generated, and for a particular component of the ground motion, squared
Fourier amplitude spectra |Fj(w)|? o Gi(w) can be calculated at each instrumental location i =
1,2,...,n (where n = 37 for SMART1). For a given frequency w, this yields a total n values |F;(w)[?
whose (sample) mean, standard deviation, and coefficient of variation characterize the local spatial
field of squared Fourier amplitude spectra across the array site. Figures 2 through 5 illustrate typical
results, for the East-West horizontal components during Events 43 and 45. The top part in Figures
2 and 3 shows the mean and the mean-plus-onestandard-deviation of the squared Fourier amplitude
spectra, while the bottom part shows their coefficient of variation as a function of frequency w, which
is seen fluctuating near one at moderate and high frequencies. The lower c.o.v.’s at lower frequencies
reflect the relatively high spatial correlation of low-frequency components of the ground motion, while
the spuriously high c.o.v.’s at near-zero frequencies stem from the mean spectra being negligible. At
moderate and high frequencies, the spectral ordinates tend to have low spatial correlation and behave
as do ordinates of sample spectral densities as predicted by the theory of statistics of stationary and
ergodic random processes.
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Figures 4 and 5 show the histograms of the squared Fourier spectra at selected frequencies, confirming
the tendency for the probability distribution to be exponential. It is as if the array stations yield, for each
seismic event, a collection of (to first approximation uncorrelated) limited-duration sample functions
from a stationary random process (with s.d.f. G(w); for an array with size and configuration as SMART1,
this interpretation works because the sample functions (the records) do have low correlation at moderate
and high frequencies. More generally, the array’s instruments “sample” the space-time random field of
earthquake ground motion at a discrete set of locations; within the “local field” corresponding to the
array site, the spectral content (and strong motion duration) are nominally the same but also possess

inherent variability stemming from their limited duration, as well as a frequency-dependent spatial
correlation structure.
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Indications are that the statistics of “sample” spectral density functions é(w) predicted by theory agree
quite well with those obtained empirically from recordings at array sites, this despite the limitation
that quasi-stationarity is assumed (within the strong-motion segment of accelerograms), along with
homogeneity in space within the confines of each “local field”. The actual evolution of the frequency
content of earthquake ground motions and spatial nonhomogeneity are likely to add to the variability,
so the theoretical unit c.o.v. at high frequencies may be interpreted as a lower bound. In spite of
these limitation, the theory (further developed below) provides a basic framework for quantifying a
significant and irreduceable component of the variability of earthquake ground motion and response
(whose very existence reduces the need and value of making the simple stochastic representation of
earthquake ground motion in terms of G(w) and sy much more complicated.)

Uncertainty about the Ground Acceleration Variance

Consider again a sample of limited duration sg of a stationary (and ergodic) random process X (t) with
spectral density function G(w). The sample spectral density function G(w) tends to fluctuate strongly
variable about its mean G(w), with standard deviation the same as the mean. The expression for 42,
the sample variance of X(t), is given by equation (4). When the duration s, — oo, the sample variance
&% converges toward the “true” variance o® = B(0), which equals the integral of the “true” spectral
density function G(w). But the sample variance 62 is in general a random variable with mean

a2y 2= o0
El6’l=0 /l; G(w)dw, (9)
and variance
57 = 2% [ oo A (g
Var[g?] = p” /0 G*(w)dw = 30.4 B*(t)dr. (10)

Derivations of these and other results in this section are presented in Vanmarcke (1983). If the factor
(2/s0) is canceled, the last equality reduces to Parseval’s theorem, applicable to any Fourier transform
pair (see, e.g., Bracewell 1965), in this case G(w) and B(7).

Uncertainty of the Ground Acceleration Standard Deviation. In general, the c.o.v. of the sample
standard deviation & can be estimated based on the lognormal approximation for 42 or g, yielding the
following approximation:

Varlg] Var[6?] 1/4
—;‘2},— ~ [1 + Tt - 1. (11)

The lognormal approximation can also be used to evaluate fractiles of &, and to estimate, by convolution,
the probability density function of the maximum value X,.,, = R X &, the product of two random
variables (which are, to first approximation, statistically independent). A practical alternative is to
assume lognormality for both & and R, which makes X,,,, also lognormal.

Ezample: Band-Limited White Noise Ezcitation. If the acceleration X(¢) is a band-limited white noise
with constant spectral density between wy and w;, and zero elsewhere, the c.0.v. of 2 becomes

2n ]1/2

So(wl - wo)
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When this simple model represents the s.d.f. of ground acceleration on bedrock, the two frequency limits
depend, respectively, on earthquake magnitude and site-to-source distance; wy tends to decrease as the
magnitude increases, while w;, decreases as the distance from the source grows. The strong-motion



duration also grows, in general, with both magnitude and distance. So the measure of the inherent
uncertainty of the acceleration variance, expressed by equation (12), depends in analytically tractable
ways on magnitude and distance.

Uncertainty of Linear-System-Response Variance

Many new possibilities are created by the insight that sample spectral density functions G (w) are random
functions of frequency with mean and standard deviation G(w) and scale of fluctuation Qg = 27/s,.
All aspects of the theory of random processes can be applied to the process G(w) including information
about the heights of local peaks, level crossings and extreme values. More important, the variances and
covariances of linear transformations of G(w) can be evaluated by adapting linear random vibration
methodology. Consider, in particular, the second-order stochastic input-output relation,

Gy (@) = |[Hw)PGx (), (13)

where H(w) is the complex transfer function of a linear, time-invariant system. The transfer function

may relate ground acceleration or ground velocity to ground displacement, in which case H(w) =

or H(w) = —w?, or it may be the transfer function of the response of a simple oscillator to random

excitation. The sample spectral density function of the response is the (nonstationary) frequency-

dependent random process Gy (w), with mean and standard deviation Gy(w) = |H(w)[*Gx(w). The
“sample variance” of the response Y (t) is itself a linear transformation of Gx(w):

52 = /0 Gy (w)dw = /0°° |H(w)]2Gx (w)dw. (14)

Ezample: Low-Pass Filtering of Ideal White Noise. Consider a linear system characterized by the
“low-pass-filter” transfer function

4
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|H(w)I? =
subjected to ideal-white-noise excitation, and let sy denote the time interval of stationary excitation
and response, i.e., the sample function’s “duration”. The excitation has a sample s.d.f. Gx (w) with
constant mean and standard deviation Go. The response has the sample s.d.f. Gy (w) = |H(w)[*Gx(w).

Its sample variance 6% is as expressed by equation (4), having mean value

u wiG s
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variance
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and coefficient of variation (c.o0.v.)
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For instance, if so == 50/wo, the coefficient of variation equals 10~!/2 or about 30 percent. The c.o.v. of

the sample standard deviation, computed using equation (11), is {[1 + (1/10)]'/4 — 1}/2 =~ 0.155.

Predicting Fluctuations of Response Spectra. The technique just outlined can be used to quantify the
variability of “sample response spectra”. In this case, a given fractile (say, p = 0.5) of the “peak factor”
R depends weakly on the oscillator’s natural frequency w, and damping ratio ¢ and on the strong-motion
duration so. The variability of R is due to the random phasing of the sinusoidal components, while



that of the one-degree-system response standard deviation 6y is related to the observed fluctuations of
response spectra (plotted, as is common, against natural frequency for a fixed damping ratio). Based
on the standard second-order stochastic theory, we can evaluate the coefficient of correlation between
the “samples variances” 6§, and 63, of the response-spectral ordinates of two oscillators “1” and “2”,
for instance, two modes of a multi-degree system with a common damping ratio. Also, by assuming
that the logarithms of 67 and 6%, follow a joint normal distribution, one can express the coefficient of
correlation between the samples standard deviations 6y, and 6y, of the response-spectral ordinates of
two oscillators or two modes of a multi-degree-of-freedom system.

Inherent Variability of Ground Motion Amplitudes. As indicated, the theory applies to the peak ground
motion amplitudes (acceleration A,qz, velocity Ve, and displacement D,p,,), or more specifically to
the sample standard deviations (64, 6v, and &p). These can also be calculated for records at many
stations of a dense accelerograph array, enabling one to compare theory-based and empirical statistics.
The sample standard deviations of, say, the ground velocity at two locations within a “local field”, &9 )
and &9’ ), are generally correlated, their coefficient of correlation dependent on the separation distance,
so the theory points new ways of exploration of the local spatial correlation structure of earthquake
ground motion. Finally, since the spectral density function of bedrock ground motion can be expressed
as a function of magnitude M and focal distance R (using geophysical models), and modified to account
for local geological conditions, the theory implies a way to quantify the variability of ground motion
amplitudes as predicted by attenuation laws, enabling empirically observed effects (for instance, how
the variability of peak amplitudes within a “local field” depends on magnitude) to be systematically
quantified within a broad theoretical framework.

CONCLUSIONS

Subject to limitations (to be further investigated) owing to the assumed quasi-stationarity and local
spatial homogeneity of ground motions, we outlined a theoretical framework for quantifying the inher-
ent uncertainty of ground motion and structural response stemming from their limited duration. The
variability of ordinates of Fourier amplitude spectra and the fluctuations of response spectra of individ-
ual earthquake records generally match the corresponding measures of spatial variation at dense array
sites, as exemplified by some data from the SMART1 accelerograph array. The analytical tractability
of this aspect of the randomness of “local fields” of earthquake ground motion, and the value it adds
to information implicit in individual accelerograms, should lead to: (a) improved understanding and
predictability of (spatial) patterns of peak ground motion amplitudes within a “local field”; (b) a clearer
interpretation of a local field’s “effective peak acceleration” and “probable-local-maximum peak accel-
eration (to which design response spectra might be anchored); (c) quantification, from first principles,
of the variability of ground-motion-amplitude attenuation laws; (d) improved random-vibration-based
predictions of the response of both linear and nonlinear systems, singly- or multiply-supported; (e) and
instrumentally-based approach to predicting patterns of damage within a local field, complementing
(and for many purposes replacing) measures such as Modified Mercalli Intensity.
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