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DYNAMIC PROPERTIES OF WEATHERED SOIL DEPOSIT
INFLICTED BY THE KOBE EARTHQUAKE
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Kiso-jiban Consultants Co. Ltd., Tokyo, Japan

ABSTRACT

The soil prevailing in the wide area damaged by the 1995 Kobe Earthquake is disintegrated weathered granite.
Since the Kobe area has long been deemed seismically inactive, little has been known about the dynamic
properties of this type of soil. To provide some basic data for identification of site characteristics, a series of
tests have been performed on reconstituted specimens of the soil from the Kobe area using the hollow cylindrical
torsional test apparatus. In addition, cyclic tests were performed using uniform loading as well as irregular time
histories. This paper discusses the results of these tests as well as the salient features of the behavior of the
deposit when subjected to seismic loads.
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INTRODUCTION

On January 17, 1995, an earthquake of magnitude 7.2 occurred in western Japan, resulting in death of more than
5,000 people and causing widespread damage to buildings and other civil engineering structures. Among the
affected areas, the city of Kobe suffered extensive damage as a result of soil liquefaction. Sand boils, ground
seftlement and lateral spreading were evident in the area, especially on natural and artificial fill deposits along
much of the shoreline on the north side of Osaka Bay. Most severely damaged were the areas of landfills in the
two large man-made islands, namely, the Port Island and Rokko Island.

Since the Kobe area has long been regarded as seismically inactive, little has been known about the dynamic
properties of the soil in the area, such as strain-dependency of modulus and damping characteristics, and
liquefaction strengths. This paper intends to describe some of the test results in the laboratory which are of use
for the identification of the site characteristics.

SOIL CHARACTERISTICS IN RECLAIMED AREAS

The heavily damaged Port Island and Rokko Island were originally constructed by reclaiming near-shore water
12 to 15 m deep using decomposed granite (locally referred to as Masado) quarried from the nearby Rokko
Mountains north of Kobe City during the period of 1967-1981 and 1973-1992, respectively. The reclamation
work was carried out by transporting the materials to the fill sites by bottom-barges and loosely dumped over
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Figure 1: Grain size distribution curves of weathered granite used for landfilling in Port Island

the seabed. The granite-based soil used for the reclamation work contained particles ranging widely in size, from
gravel to silt. Figure 1 shows typical grain size distribution curves of the soil used for the reclamation of Port
Island. Figure 2, on the other hand, shows a typical soil profile in Port Island, where it can be seen that the
reclaimed sand about 14 m thick is underlaid by a layer of soft clay which is the original seabed deposit before
the reclamation. Also shown in the figure are V_and V, profiles obtained from PS-logging tests.
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Figure 3: G/Go~h~ y curves of weathered granite

frequency of cyclic loading was 0.1 Hz. Shear moduli and damping ratios at the tenth cyclic loading were taken
as representative values in the present study.

Figure 3 shows the relation between the shear modulus and damping ratio with the shear strain. The shear modulus
is normalized with respect to Go, i.c., shear modulus at small shear strain level. Solid dots in the figure
correspond to ¢ ' = 66.7 kPa, while open dots are for ¢ ' = 33.3kPa. It can be seen that all data points, whether
for shear modulus or for damping, lie more or less along a single curve, indicating that the magnitude of
confining pressure has negligible effect. Also shown in the figure by solid lines are the strain-dependent shear
modulus and damping characteristics of the Japanese standard Toyoura sand for ¢ ' = 66.7 kPa (from Kokusho,
1980). Note that the variation of damping with strain for the weathered granite deposit is almost similar to that
of Toyoura sand. The degradation curves are also more or less similar except that the degradation for the weathered
granite is more prominent specially in the range of strain from 10* ~10~.

CYCLIC LOADING TEST RESULTS

In addition, a series of cyclic loading tests were performed using the torsional shear test apparatus. The

dimensions of the specimens and the method of sample preparation were similar to those in the dynamic tests

mentioned above. In order to examine the effect of load irregularity on the cyclic behavior of weathered

granite, two types of loading patterns were employed: uniform harmonic loading and irregular loading using

the same time history recorded on the ground surface at Port Island during the earthquake. For both loading
cases, two sets of specimens were prepared: loose samples (€=0.483~0.491) and medium dense samples

(e=0.347~0.354). In the tests, the specimens were isotropically consolidated to an effective confining stress

of 100 kPa. Following consolidation, the specimens were subjected to a constant amplitude load with frequency

of 0.1 Hz or an irregular time history of shear stress under undrained condition. The results of the tests for each

loading type are discussed below.

Uniform Loadi

Typical records of uniform loading tests obtained on loose sample (€=0.483) and medium dense sample
(e=0.354) are shown in Figures 4(a) and 4(b), respectively. It can be seen in Figure 4(a) that for loose sample,
the pore water pressure developed to become almost equal to the initial confining stress, with large deformation
taking place in the sample. However, for medium dense sample, such phenomenon did not occur and shear
deformation increased gradually as the cyclic stress application continued, even after the pore water pressure
had become equal to the initial confining pressure. All the results of the uniform loading tests are summarized
in Figure 5 in terms of the cyclic stress ratio, t /o ', plotted versus the number of cycles required to produce
a double amplitude of shear strain of 7.5%. In the figure, t , corresponds to the deviator stress while o '  is
the initial confining pressure. It is noted that the smaller the void ratio (or the larger the relative density), the
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Figure 4: Typical results of uniform loading test on (a) loose sample; (b) medium dense sample
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stress applied was t /o ' =0.385, and the Port Island
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Figure 8: Typical results of irregular loading test on loose sample: (a) © /o ' =0.385;(b) t /o ' =0.634

pore water pressure and shear strain, v , were recorded. It can be seen in the figure that when the peak shear
stress is encountered, the pore water pressure builds up to about 50% of the initial confining stress, but it ceases
to increase thereafter although shear stresses with lesser amplitude are still being applied to the specimen. In
addition, the maximum shear strain attained is about 1.1% which occurred at the instant of maximum shear
stress. Figure 8(b), on the other hand, depicts the results for a specimen with identical void ratio but subjected
to higher stress level, with the maximum shear stress ratio of t /o ' =0.634. It can be seen that in this case, the
pore water pressure builds up to a value almost equal to the confining pressure at the time when the peak shear
stress is applied, indicating the attainment of initial liquefaction. In addition, a shear strain of about 10% occurs
at the time of peak shear stress application, but it grows to a magnitude of 12% in the course of shear stress
application following the peak.

hear i I 1

The magnitude of the maximum shear strain developed in the specimen can be considered as a key parameter
for representing the strength characteristics of deposits under cyclic loading conditions (Nagase and Ishihara,
1987). The plots of the maximum shear strain with the magnitude of irregular shear stress expressed in terms
of the maximum shear stress ratio, t . /o ‘ , for both loose and medium dense samples are shown in Figure
9 by open and solid circles, respectively. It may be seen that for both cases, the maximum shear stress ratio
increases abruptly and then gradually with the shear strain. In order to produce similar magnitude of maximum
shear strain, the denser sample requires a greater level of shear stress than a looser sample. The figure also
illustrates the test results for uniform loading test with 20 cycles of load application (shown by open and solid
squares). By comparing the curves for irregular and uniform loadings, the effect of the irregular nature of
seismic load application on the strength of soil may be evaluated. This can be done by comparing the maximum
shear stress ratio required to cause a given amount of maximum shear strain under irregular loading conditions
with the cyclic stress ratio required to produce the same amount of shear strain with 20 cycles of load
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Figure 9: Variation of maximum shear stress ratio, © _, /o ', , with shear strain

application under uniform loading conditions. The ratio between these two stress levels is referred to as the load
irregularity factor, t /7 . . From the figure, it can be seen that the load irregularity factor changes with the
amplitude of shear strain being considered but lies by and large between 0.43~0.50 for loose samples
(e=0.486) and between 0.40~0.44 for medium dense samples (e=0.350). For a value of v , =3.75% (single
amplitude), the load imregularity factor is equal to 0.46 for e=0.486 and 0.42 for e=0.350. These factors correspond
to values of C, (reciprocal of load irregularity factor) in the Japanese code for bridge design of 2.2~2.4, which
are generally larger than the recommended values of 1.4~1.8. Clearly, the results show that the present criteria
in evaluating liquefaction strength of weathered granite on the basis of cyclic stress ratio causing initial
liquefaction in 20 cycles of uniform load application may be inadequate.

me Ch i nsolidation

The volume change characteristics of the sample during dissipation of pore water pressures following the
application of cyclic shear stress in undrained condition is also investigated. In the test series mentioned above,
after the irregular load with a certain amplitude was applied to the sample and the pore water pressure and the
maximum shear strain produced have been measured, the drainage line from the test sample was opened to
dissipate the residual pore water pressure that have developed and the volume change of the sample due to
reconsolidation was monitored. Plots showing the variation of ¢ , with the maximum shear strain, v, is shown
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Figure 10: Variation of volumetric strain, ¢ , with shear strain



in Figure 10 for loose and medium dense samples. It can be observed from the figure that for a particular level
of shear strain, the volumetric strain is larger for loose samples than for medium dense samples. Comparison
of these results with those compiled by Ishihara and Yoshimine (1992) yielded an approximately coincident
trend in correlating the reconsolidation volume change with the maximum shear strain during the undrained
cyclic loading.

CONCLUDING REMARKS

In order to clarify the dynamic behavior of weathered granite soil deposit which suffered extensive damage
during the 1995 Kobe Earthquake, a series of torsional shear tests were performed. Dynamic tests were
conducted to determine the shear strain-dependent properties of the deposit. The results showed that the
variation of shear modulus and damping with shear strain for weathered granite is comparable to those of the
Japanese standard sand. In addition, the cyclic tests conducted using uniform and irregular time histories resulted
in values of the irregularity factor C, which are much greater than those recommended in the current Japanese
code. Further tests may be necessary to support the above findings.
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