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ABSTRACT

While most of the research on the dynamic response of piles has in the last 20 years focused on the
interaction between piles and soil, triggered either by the inertial forces of the structure or from the passage
of seismic waves through the soil, the 1995 Kobe earthquake revealed in a most dramatic way that damage to
piles can be caused by large ground displacements. On the other hand, pile foundations in many cases
survived liquefaction-induced deformations of significant magnitude. The paper discusses the research needs
in this field, in view of the lessons from Kobe.
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INTRODUCTION

The Hyogo-ken Nanbu earthquake, simply known as the Kobe earthquake (Japan Society of Civil
Engineers, 1995), a direct-below-land type earthquake occurred on 17th January, 1995. It measured a

magnitude of 7.2, caused about 6300 deaths and unprecedented human suffering. With the progress of
damage investigation and the restoration activities, the research and development needed to mitigate similar
damage are gradually being clarified. In general, much time and expense are required to discover the damage
to piles, because piles are in-ground structures. While damage to building and highway bridge pile
foundations from the Kobe carthquake has been reported (Shamoto, et al., 1995, 1996, Mizuno, et al.,
1995, Nagai, 1995, Oh-oka, ef al., 1996, Tokimatsu, et al., 1996), these reports are just beginning to be
filed, and it will take time to elucidate the extent of damage to pile foundations.

During the Kobe earthquake, extensive ground liquefaction and liquefaction-induced ground movement took
place in uncompacted reclaimed lands along much of the shoreline on the north side of Osaka Bay. A salient
characteristic of pile damage due to ground liquefaction and liquefaction-induced ground movement is that
the damage may occur not only at the pileheads but also in the middle portions and at the pile-tips. In the
cases where damage occurred in the middle portions and at the pile-tips, identification and retrofitting become



impractical and expensive, when compared to damage at the pileheads.

What should we do in order to mitigate such damage? What were the predominant external causes? How can
we find out which parts of the in-ground piles were damaged? How should the damaged piles in the ground
be repaired? These are simple and important questions in view of the damage in the Kobe earthquake. This
paper states various thoughts on pile foundation earthquake engineering research and development subjects
which demand close investigations as indicated by the damages caused by the Kobe earthquake.

SEISMIC DAMAGE

Although seismic damage to pile foundations has been an area of great interest in past large earthquakes, little
is known about damage to pile foundations compared to that to superstructures, due to survey limitations of
in-ground structures. Mizuno (1987) surveyed 28 cases of seismic damage to pile foundations. This was
caused by seven large earthquakes which occurred in Japan during a sixty-year period from the 1923 Great
Kanto earthquake to the 1983 Nihonkai-Chubu earthquake. They are classified into five categories based on
predominant external causes of damage, as follows: (1) Lateral displacement of cohesive and/or organic soil,
(2) Failure and movement of embankment or earth fill, (3) Ground liquefaction and liquefaction-induced
ground movement of sandy soil, (4) Vibration effects of the soft soil deposit, (5) Vibration effects of the
superstructure and resulting inertial forces. The pile damage patterns were classified into four types as
follows: (a) Shear and compressive failure of pileheads involving subsidence, (b) Ring-type cracks due to
bending moment (no subsidence), (c) Separation of pile and pile cap, (d) Pile welding joint buckling failure.
Mizuno drew the following conclusions: compared to steel piles, the damage to precast concrete piles,
especially AC piles (precast centrifugally compacted autoclaved prestressed concrete pile; pre-tension
prestressing) and PC piles (precast centrifugally compacted prestressed concrete pile; pre-tension
prestressing), is significant. AC and PC pile damage patterns exhibit not only ring-type cracking due to
bending moment with no subsidence, but also failure with subsidence. From retrofit and underpinning cost
viewpoints, pile failure with subsidence should be prevented. The effects of ground shaking on piles during
earthquakes should be included in seismic design.
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is mainly of two types:

ground liquefaction and

liquefaction-induced ground movement as shown in Figure 1. Figure 1 (a) shows the damage pattern caused
by ground liquefaction. Lateral soil resistance to the piles was diminished due to liquefaction; consequently,
the piles suffered cracking or crushing not only at the pileheads but also at the boundaries between liquefied
and unliquefied soil layers. Figure 1 (b) illustrates the damage pattern caused by liquefaction-induced lateral
ground movement. Piles of structures located near the waterfront suffered damage by liquefaction-induced
ground movement of the sandy soil filled to the back and the base of the quaywall or revetment. Failure
occurred in the middle portions of piles and/or at the pile-tips.



Another example of pile deformation is shown in Figure 2, in terms of pile deformation angle. The
superstructure is a girder-type road bridge, length = 50 m across ariver. The abutments of the two sides of
the bridge are supported by 45 piles each. The diameter and length of the piles are 0.50 m and 34 m,
respectively. The piles consist of three parts: the upper part is an eight meter long composite pile of steel pipe

and concrete, and the middle and lower parts are thirteen
meter long PC sections. Lateral movement of the ground
surface induced by liquefaction was about 1 m. It can be
seen from Figure 2 that between S m - 12 m from the
pilehead sever damage may have occurred, because the
change in the deformation angle becomes significant at
that point. An interior inspection, carried out with a
fiberscope, revealed many cracks on the concrete
between 9 m to 18 m from the pilehead.

In order to develop a clear understanding of the
mechanics of such failures several tools are available and
must be utilized to their fullest extent: shaking table tests
at 1-g, centrifuge model tests, and numerical analyses.
Comparison of the results of such tests with carefully-
conducted field measurements will help in providing
answers to some of the questions posed in the
introduction. Furthermore, developments in counter-
measures to mitigate damage to piles, in nondestructive
testing methods to investigate damage and severity of
that damage to parts along piles, and in strengthening
damaged pile foundations are also crucial.
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Fig.2. Measured deformation angle of Ppile

damaged by liquefaction-induced ground
movement during the 1995 earthquake
(Shamoto, et al., 1996)

SHAKING TABLE TEST AND SEISMIC OBSERVATION

Sato et al. (1996) carried out shaking table
tests of pile foundation structure systems
utilizing centrifuge modeling to clarify the
dynamic behavior of piles caused by
liquefaction-induced ground movement.
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occur at the middle part four meters downward from the pilehead of pile A and at the pilehead in pile B,
which were located near to and far from the quay, respectively. This damage pattern is similar to that of the
three-story RC building investigated by Oh-oka et al. (1996) which is examined later.

In recent years, the use of centrifuge modeling has become increasingly accepted as an appropriate technique
for geotechnical problems. Centrifuge modeling, as well as the 1-g modeling (Kagawa et al., 1995), is very
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important when investigating the causes of actual damage due to ground liquefaction.
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only at the pileheads, but also at the along piles (Sato, et al, 1996)

boundaries of soil layers where the
stiffness varies significantly. The bending strains of the pileheads are primarily affected by superstructure
inertia, while those at the pile-tips are significantly affected by ground shaking (Gazetas et al., 1993).

EARTHQUAKE RESPONSE ANALYSIS TAKING INTO ACCOUNT GROUND
LIQUEFACTION AND LIQUEFACTION-INDUCED GROUND MOVEMENT

It is obvious from the damage patterns during the Kobe earthquake that analytical studies on the earthquake
response analysis of pile foundation structure systems which take into account ground liquefaction and
liquefaction-induced ground movement are quite important.
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Fig. 5. FEM model for ground liquefaction and liquefaction-induced ground movement
(Fuchimoto, et al., 1996)

Fuchimoto et al. (1996) studied the earthquake response analysis of a building which was damaged in the
Kobe earthquake. Taking into account ground liquefaction, the study validates the theory, and investigates
the predominant cause of the damage to the pile foundation. The damaged building is a two-story office
building supported by six PHC piles (PHC pile; pretensioned spun high strength concrete pile; d = 400 mm
from pilehead to 30 m below, and d = 300 mm from 30 m below to pile-tip, 1 = 42 m).

Two-dimensional effective-stress analysis was implemented to examine the dynamic behavior of the piles
during ground liquefaction. Figure 5 shows the analytical model. Modified Ramberg-Osgood model and the
Bowl dilatancy model were used for the stress-strain and stress-dilatancy relationships, respectively. The
analysis for the liquefaction-induced ground movement was conducted pseudo-statically, accounting for soil



degradation due to development of pore water pressures; the
latter were obtained from effective stress analysis. A static
analysis is justified since liquefaction-induced ground
movements often occur after the shaking has stopped.

Figure 6 plots the computed horizontal deformations versus
depth. It can be seen that failure may occur at the pilehead,
the middle part of the pile, and the pile-tip. The failures are
apparently caused by large ground deformation due to
liquefaction. The pile failure modes obtained from the
analysis are compatible with those based on the damage
investigation by Shamoto et al. (1995).

NONDESTRUCTIVE TEST FOR
IDENTIFYING PILE DAMAGE

In cases where subsidence and/or tilting occurs to buildings
supported on piles, it should be presumed that there are
some problems with the piles. For investigation of such
damage, direct visual inspection by excavation around the
pilehead is usuallv adopted. However, in most cases
excavation can not be possibly carried out. Moreover,
damage by liquefaction may occur not only at the pileheads,
but also in the middle parts and tips. It is quite difficult,
except in some special cases, to excavate along the entire
length of the piles. For the reconstruction of damaged
buildings, it is then necessary
to have sufficiently accurate
knowledge of how serious the
damage to piles is and where it
occurred. It is also important to
have detailed knowledge of the
damage in order to examine

countermeasures for retro- Quay
fitting and strengthening. Con-
sequently, the development of

reliable inspection methods,
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observation detected both diagonal cracks at a depth of 4.5 m and horizontal cracks at a depth of 9 m. On the
other hand, the pile integrity tests identified only the
cracks nearest to the pileheads. In both cases, the
depths of the detected cracks corresponded approxi-

mately to the boundaries between soil layers where |_‘—_',—|
stiffness varies significantly.

Mori et al. (1995) proposed a new nondestructive
testing method for detecting concrete pile damages
utilizing acoustic emission effect. These authors , _

noticed that an acoustic emission is discharged from T P acoustia
damaged parts of the concrete pile to which the body { LR ™ |
force of the superstructure is applied. An outline of '
this method is sketched in Figure 8. Acoustic
emission sensors are installed into boreholes near the
piles to detect the acoustic emission discharged from

) . Fig. 8. New nondestructive testing method
the damaged parts of the pile. This new method has for detecting concrete pile damage utilizing

great merits in that there is no need to expose the acoustic emission effect (Mori, ez al, 1995)
pilehead as in integrity sonic tests.

RETROFIT OF DAMAGED PILE

A great amount of damage occurred to cast-in-place concrete piles of highway bridge piers during the Kobe
earthquake. Especially severe was the damage to the piles of the bridges of the Harbor Highway. These
bridges link the artificial islands with the coast of Kobe, and were therefore founded through soils that
experienced large flow-type deformations. Since the girders and piers of the bridges suffered only slight
damage, it was decided that only the pile foundations should be strengthened in the restoration of the
bridges. To be precise, 151 piers of a total 225 bridge piers were judged to be in need of repair and/or
strengthening. In regard to restoration methods, 75 piers will be strengthened by increasing the number of
piles and 76 piers will be strengthened through soil improvements (Nikkei Construction, 1995).

There are many technical aspects to strengthening damaged piles. For example, if the piles are to be
strengthened by increasing their number, how should the existing damaged piles be evaluated? In the case
that additional piles are constructed near existing piles, there may be no remarkable efficiency because of pile
group effect. How can we evaluate the effect of soil improvement on the future seismic performance of the
piles? It is clearly important and urgent for seismic restoration that considerable progress be made in research
and development on design and construction techniques for strengthening of damaged piles.

COUNTERMEASURES TO EXISTING STRUCTURE
AGAINST LIQUEFACTION MOVEMENTS

Many structures suffered from ground liquefaction and liquefaction-induced ground movement during the
Kobe carthquake as mentioned above. Existing structures in other seismic areas have a possibility of being
damaged in ways similar to those experienced in the Kobe earthquake. Therefore, countermeasures must be
taken with existing structures against liquefaction. To this end, it is necessary to consider a number of
different factors as they were made clear from the results of the earthquake.

Figure 9 shows examples of countermeasures to existing above-ground oil tanks (Suzuki ef al., 1995,
Sakemi et al., 1995). Sheet piles are constructed in ground, surrounding the tank to restrain the shear
deformation of the ground under the tank in order to mitigate against ground liquefaction. The effectiveness
of the proposed countermeasures has been clarified through seismic observation, finite element analysis, and



vibration tests using centrifuge modeling. It is necessary that countermeasures to existing structures should
be both effective and inexpensive.

Many quays and revetments were moved laterally a
few meters toward the sea or river by liquefaction-
induced ground movement during the Kobe
earthquake. Economical countermeasures against
such damage should also be developed. Figure 10
represents a new low-cost countermeasure
applicable to quays and revetments proposed by
Yamada et al. (1996) in which braced soil-cement Fig. 9. Countermeasure for existing oil tank
mixing-walls is coupled with vertical ones. The using sheet-pile ring (Suzuki, ez al., 1995)
effectiveness of this countermeasure has been

studied both numerically and in the centrifuge.
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Fig. 10. Countermeasure against liquefaction using
inclined and vertical soil-cement "w alls"
(Yamada, et al., 1996)

CONCLUSION

It is hoped that the lessons learned from the 1995 Kobe earthquake will help in developing strategies to
minimize the extent of damage in future strong earthquakes.
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