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SEISMIC BEHAVIOUR OF SHALLOW FOUNDATIONS
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ABSTRACT

The earthquake response of shallow foundations, including the nonlinear interaction effects with the
superstructure, is studied by a simple method that, unlike other simplified approaches, directly takes into
account the coupling between the soil-foundation system and the superstructure. The proposed model
consists of a 4 degree-of-freedom (dof) oscillator, namely 1 dof for the superstructure and 3 for the
foundation, and introduces nonlinear effects in the calculation of soil reactions through a failure criterion and
plastic potential taken from previous experimental work. Comparing the results of an application to granular
soils with those of more sophisticated finite element analyses, a satisfactory agreement is found, suggesting
that the main features of this complicated nonlinear problem can be captured without resorting to an accurate
description of the soil behaviour.
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INTRODUCTION

Recent research on the seismic bearing capacity of shallow foundations (Sarma and Iossifelis, 1990; Pecker
and Salencon, 1991; Budhu and Al-Karni, 1993) has lead to a better understanding of the governing factors.
Using yield design theory, Pecker and Salengon (cit.) and Paolucci and Pecker (1996) have shown that both
for cohesive and granular soils, the detrimental effects of soil inertia become significant only when the
foundation is designed with a low factor of safety (indicatively F, < 2). Otherwise, they can be neglected with
respect to the inertial actions transmitted by the superstructure.

On the other hand, truly dynamic approaches to the evaluation of permanent foundation displacements during
earthquakes have been relatively few, and mostly limited to the well-known method of Newmark (1965),
under the basic assumption that such displacements develop only upon the attainment of failure loads. Sarma
and Tossifelis (cit.) and Richards et al. (1993) treat the soil as an assemblage of rigid blocks under the
foundation , whereas Pecker and Salencon (cit.) and Pecker (1994) relaxed this assumption by introducing
soil deformability. Also crucial to the Newmark class of models is the decoupling between the superstructure
response, generally calculated by standard structural methods, and the foundation response. This
“substructures” approach has the important drawback of neglecting the effects of plastic flow in the soil on
the inertial loads that the superstructure transfers to the foundation.



A more complete and rigorous approach would be the global modelling of the soil-foundation-superstructure
system by finite elements. In this case, realistic prediction of the permanent displacements would require a
sophisticated constitutive description for the soil, with substantial increase of the computational load.

To overcome some of the previous problems, a simple method is presented here for nonlinear foundation

interaction analyses and the results obtained are compared to those yielded by a more rigorous approach.
OUTLINE OF THE METHOD

The simple 4 degrees of freedom (dof) system illustrated in Fig. 1 is considered, with 1 dof describing the

movement of the superstructure and 3 dof that of the foundation. The dynamic equilibrium is described by the
following set of equations:
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The following notations are used:
x;,x,=displacement of the structure and of the —t— Xy —_—

basement, respectively, relative to the soil; n
¢ = rocking motion of the basement; = Yo+ hfy
x, = vertical displacement of the structure;
X,,J,= horizontal and vertical component, fm

respectively, of ground acceleration; p
m, = effective mass of the superstructure; '
my = mass of the foundation h
J = sum of the centroidal moments of inertia of the :

building and the foundation; ¢
h = effective height of the superstructure;
ki, ¢ = elastic stiffness and damping of the

superstructure;
Co, ¢, ¢ = equivalent elastic spring and dashpot

coefficients of the soil-foundation system

corresponding to the translational, rocking and

vertical modes of vibration, respectively;
H, M, V = soil reactions, horizontal, rotational and Fig. 1. The 4 dof model for the analyses of non-

vertical, respectively. linear dynamic soil-structure interaction.

Note that the structural stiffness matrix K* is separated from the vector F of the soil reactions, where the

non-linearity of the problem is concentrated. The non-linearity is introduced in the calculation of the soil
reactions, whereas the superstructure is assumed to behave elastically. A failure surface in the H-M-V space is
introduced and the soil behaviour is assumed to be linear visco-elastic until the failure surface is reached. This



means that the plastic deformations induced by an earthquake for load conditions inside the failure surface are
negligible with respect to those occurring at failure. For simplicity, no hardening is considered, although it
could significantly affect the development of permanent deformations. Thus, the overall soil behaviour is
assumed to be elastic-perfectly plastic. The radiation damping in the terms co, c,, ¢, is considered also during
the plastic calculations.

If we call f(F) the yield function which defines the failure surface (with f(F)<0), and g(F) the plastic
potential, the vector of the soil reactions can be calculated in one of the following two ways:

- if f(F)<0,o0r(f(F)=0 and df(F) <0), the response is elastic, so that:
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and ko, k, k, are the equivalent elastic spring and dashpot coefficients of the soil-foundation system
corresponding to the translational, rocking and vertical modes of vibration, respectively;

- if f(£)=0 and df (F) = 0, plastic flow occurs, with
En+l = En + £i€p (£n+1 - In) (3)

where K'? is the elastoplastic stiffness matrix of the soil foundation system. This can be calculated in terms

of the elastic stiffness matrix K " and the derivatives of the yield and plastic potential functions (see e.g.
Zienkiewicz and Taylor, 1991):
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The time integration is carried out by the explicit Newmark scheme, whereas the solution of the non-linear
system (1) is obtained by the modified Newton-Raphson method.

CHOICE OF THE YIELD FUNCTION AND FLOW RULE

The previous method applies both for cohesive and granular soils, provided that an adequate yield function
and flow rule are chosen. For cohesive soils, the assumption of associated flow rule makes things easier, in
that the yield function and plastic potential coincide. In this paper, however, we will concentrate on the case
of granular soils in drained conditions. The failure of model strip footings on dry granular soils under general
planar loading conditions, as well as the development of permanent displacements, has been thoroughly
studied in recent years, particularly by Butterfield and Gottardi (1994), Gottardi and Butterfield (1995) and
by Nova and Montrasio (1991). Due to the simplicity of the analytical expressions and the good agreement
with the experimental results, the yield function and the plastic potential proposed by Nova and Montrasio
(cit.) have been considered, namely:

FE)=h* +m* -V} (1-v)** )
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where h=H/uVinux, M=M/YBVyax, V=V/Viuay, are the normalized soil reactions and 4, ¥, B 4, y are model
parameters, whose values are discussed in the quoted paper. Ve is the static bearing capacity under vertical
loads. Note that a non-associative flow rule has been considered in this case.

COMPARISON WITH 2D FINITE ELEMENT SIMULATIONS

This simplified method has been tested against a dynamic finite element simulation of the seismic response of
a shear beam (superstructure) supported by a shallow strip foundation, 4 m wide, resting on cohesionless soil
in drained conditions. The superstructure is 16.2 m high and has a fundamental period of vibration Ty = 0.5 s.
In static conditions, it transmits to the soil a vertical load V; = 600kN. The finite element mesh is shown in
Fig. 2. The soil behaviour has been described by the elastoplastic model of Hujeux (1985), which is a
generalization of the well known Cam Clay model, with mobilization of both deviatoric and isotropic plastic
mechanisms. The parameters of the model were chosen by fitting static and cyclic drained triaxial tests data
for the medium dense Hostun sand, with relative density D, = 65% (Faccioli et al., 1995). The elastic shear
modulus G varies with depth as:
n
G=G, (i) Q)

Do

where p = effective confining pressure, G, = 250Mpa, po = 1Mpa, n = 0.5. The dynamic analyses were carried
out by the finite element code GEFDYN (Aubry et al., 1986). A base excitation denoted as Gemona 13 has
been considered, consisting of a real accelerogram from the September 1976 Friuli (Italy) strong aftershocks,
with peak ground acceleration 0.63g.

The elastic spring and dashpot coefficients of the interaction problem have been calculated by the DYNA2
code (Novak et al., 1983), and the following parameters were used for the analyses with the simplified
method:

my=5-10* Kg, k1 = 7.9-10° N/m, ¢; /co= 10%, mg=1-10* Kg, k= 0.5-10° N/m, ¢, = 1-10° Kgs/m, J = 4.8-10*
Kgm’, k. = 1.5-10°Nm/rad, k, = 5.5-10° N/m, ¢, = 3-10° Kgs/m, /= 10.8 m.

The model parameters p = 0.46, y = 0.5, B=0.951=0.4, 5 =04, close to the values suggested by Nova
and Montrasio (cit.), have been chosen for the expressions (5) and (6) of the yield function and plastic
potential. Note that u is the tangent of the friction angle at the soil-foundation interface and has been
calculated as 2/3tang, where ¢ = 35° is the soil friction angle; the value of y indicates the maximum
eccentricity ratio /B that can be sustained by the foundation under vertical eccentric load. Vp,,=9.1-10° was
calculated by the standard superposition formula for the bearing capacity of shallow strip foundations on
granular soils.

In Fig. 4 the horizontal, vertical and rocking components of the base motion obtained by the proposed
method are compared with the relative motion between the foundation and the free-field calculated by finite
element simulations. A satisfactory agreement is evident for the displacement components, whereas for the
rocking motion the solutions agree only in the first 3 sec of the excitation. After the strong acceleration pulse
occurring at ~3.2s, the behaviour predicted by the two solutions diverges, probably because of soil hardening
effects that are not considered in this present version of the simplified method. Also, the latter does not take
into account the changes of the center of rotation of the foundation during possible phases of uplift.

The plots of the base horizontal force vs. displacement and the base moment vs. rocking (Fig. 5) obtained by
the simplified method show that the combination of shear force and overturning moment lead to reaching the
failure surface during many phases of the excitation, although the final permanent displacements are not very
large. In this respect, it should be noted that the non-linear response of the foundation system causes a
significant reduction of the structural response, predicted both by the present simplified method and by the
finite element simulation (Fig. 6).
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Fig. 2. Finite element mesh for dynamic analyses Fig. 3. Base excitation.

on non-linear soil-structure interaction.
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Fig. 4. Displacement and rocking components of base motion Thick line: finite element method. Thin line:
present simplified method.

Fig. 5. Left: Horizontal soil reaction vs. displacement; right: moment vs. rocking. The values are
normalized by the static vertical load V.
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Fig. 6. Time history of the base shear normalized by Vy . Thick line: finite elements; Dashed line: present
method; Thin line: rigid base assumption without non-linear effects.



CONCLUSIONS

In spite of the present limitations, the simple elasto-plastic model presented in this paper has been shown to
describe in a satisfactory way most of the salient features of the seismic response of soil-foundation systems
dynamically coupled with the superstructure. Additional work is needed for improving the non-linear
description of the soil-foundation behaviour, mainly by the introduction of soil hardening, and for testing the
method against experimental observations during earthquakes. Considering the heavy computational burden
of sophisticated finite element analyses, this method seems to be a promising tool for simplified parametric
analyses of non-linear soil structure interaction during earthquakes.
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