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ABSTRACT
The consistent infinitesimal finite-element cell method, a boundary finite-element procedure, to model
unbounded soil is summarised. This novel procedure based solely on finite elements and standard matrix

operations combines the advantages of the boundary-element and finite-element methods. Excellent
accuracy for a wide range of problems is demonstrated.
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INTRODUCTION

To analyse dynamic soil-structure interaction by the substructure method, the interaction force-motion
relationship in the degrees of freedom on the structure-soil interface of the unbounded soil is required
(Fig. 1). In the frequency domain the amplitudes of the displacements {u(w)} are related to those of
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Fig. 1. Interaction force-motion relationship on discretized structure-soil interface of unbounded soil

the interaction forces {R(w)} by the dynamic-stiffness matriz [S*®(w)] as

{B(w)} = [§(w){u(w)} (1)

In the time domain the convolution integral applies

(RO} = [ 1M~ r)li(r))ar @



with the acceleration unit-impulse response matriz [M>(t)]. [S°(w)] or [M*(¢)] is calculated with the
consistent infinitesimal finite-element cell method. As only the structure-soil interface is discretized and
the formulation is based solely on finite elements, the method is a boundary finite-element procedure.

The consistent infinitesimal finite-element cell method is described in great detail in the book by Wolf
and Song (1996), where partial differential equations of the hyperbolic type (e.g. wave propagation in
time domain), the parabolic type (e.g. diffusion in time domain) and of the elliptic type (statics and
e.g. wave propagation in frequency domain) are addressed. The application to bounded media is also
examined. This paper describes only the concept and demonstrates the high versatilities and accuracy
in modelling the unbounded soil. For the derivations and a literature survey the reader is referred to
Wolf and Song (1996).
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Fig. 2. Concept of consistent infinitesimal finite-element cell method with infinitesimal cell width leading
to finite-element discretization of structure-soil interface only

The fundamental idea of the consistent infinitesimal finite-element cell method to model an unbounded
soil is illustrated in Fig. 2 taking the irregular structure-soil interface into account. Another similar
fictitious interface is conceptually introduced by multiplying the coordinates of the structure-soil in-
terface referred to the similarity centre O by a similarity factor (Fig. 2a). The similar interfaces are
defined by the characteristic length r, with r; for the structure-soil interface and r. for the fictitious
interface. The bounded region between these two interfaces is discretized with a cell of finite elements
(Fig. 2b) with its interior boundary coinciding with the structure-soil interface and its (similar) exterior
boundary with the fictitious interface. The remaining part of the unbounded soil which has not been
discretized with finite elements can be interpreted as the same unbounded soil but with the fictitious
interface representing another structure-soil interface (Fig. 2c). The latter system is denoted as the
unbounded soil characterized by r, and analogously the actual unbounded soil is characterized by r;.
Obviously, adding the bounded region to the unbounded soil with re results in the similar unbounded
soil with r;. This concept can be applied to their dynamic-stiffness matrices. Assembling the dynamic-
stiffness matrix of the cell (which is straightforwardly determined from its static-stiffness and mass
matrices) and the unknown dynamic-stiffness matrix of the unbounded soil characterized by the length
Te results in the unknown dynamic-stiffness matrix of the unbounded soil with length r;. This results
in one relationship between the dynamic-stiffness matrices at the two interfaces. For an infinitesimal
cell width in the radial direction, a term 9[5°°(w)]/dr will occur. In addition, another relationship for
the dynamic-stiffness matrices at similar structure-soil interfaces of an unbounded soil is derived using
dimensional analysis as

o[S*(r,w)] _ 0 9[S>(r,w)]
TT = (S - 2)[5 (T, LU)] + MT— (3)

with the spatial dimension s (= 2 or = 3). The two relationships leads to an expression for the dynamic-
stiffness matrix of the unbounded soil as a function of the property matrices of the cell. Performing the
limit of the cell width towards zero analytically yields an equation for the dynamic-stiffness matrix at



the structure-soil interface. Thus, only the discretization of the structure-soil interface remains. The
inverse Fourier transformation leads to an equation for the acceleration unit-impulse response matrix.

CONSISTENT INFINITESIMAL FINITE-ELEMENT CELL EQUATION

The structure-soil interface is discretized by doubly-curved surface finite elements. The consistent
infinitesimal finite-element cell equation in the frequency domain with the dynamic-stiffness matrix
[§*°(w)] as the unknown equals

(1S™(@)] + EDET(S=() + ') - (s ~ Di5=(@)] - LN _ (g4 opprmj =0 )

The coefficient matrices [E°), [E'], [E?] and [M°] are calculated and assembled similarly as the static-
stiffness and mass matrices of finite elements on the structure-soil interface (Wolf and Song, 1996). For
example

5= [ [ imros
=L, L nd¢ (5a)
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applies. [N] are the shape functions of the surface finite elements, |J| is associated with the Jacobian
matrix, [B'] follows from the strain-nodal displacement relationship and [D)] is the three-dimensional
(in general, anisotropic) elasticity matrix of the stress-strain relationship.

This is a system of nonlinear ordinary differential equations of first order. It is solved starting from the
boundary condition of [S*(w)] formulated at a high frequency w using an asymptotic expansion which
permits the radiation condition to be incorporated.

The corresponding equation in the time domain with the acceleration unit-impulse response matrix
[M*(t)] as the unknown is written as

[ == o + (1EEy - o “n) [ [ e arar
+ [ [ e (12rer - ) v [ e
- SUB ~ () - aME0 =0 (6)

Applying a time discretization it can be solved step by step. In the first time step a quadratic matrix
equation (Riccati equation) is solved, which permits by appropriate choice of the eigenvalues the radi-
ation condition to be incorporated. In all subsequent time steps a linear system of equations with a
constant coefficient matrix is solved.

CHARACTERISTIC FEATURES

The consistent infinitesimal finite-element cell method is a stand-alone finite-element formulation ca-
pable of capturing the radiation condition at infinity without using analytical solutions. Only the
coeflicient matrices of the surface finite elements are calculated, which are then used in standard matrix
operations to obtain the unit-impulse response matrix of the unbounded soil. The method can also
calculate problems for which the fundamental solution (which is necessary in the boundary-element
method) does not exist in closed form. This is, for example, the case for certain anisotropic materials.



In an actual application the discretization is limited to the structure-medium interface yielding a reduc-
tion of the spatial dimension by one, as in the boundary-element method. For problems with a bound-
ary extending from the structure-soil interface to infinity (such as a half-space with a free surface) this
novel method automatically incorporates this boundary condition in contrast to the boundary-element
method. Material inhomogeneities which satisfy similarity can also be processed without any addi-
tional effort. When similarity is not satisfied exactly as in Fig. 3a, an approximate representation of
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Fig. 3. (a) Original dynamic unbounded soil-structure-interaction problem with layers; (b) Approximate
representation enforcing similarity of unbounded soil with structure-soil interface moved outwards

the unbounded soil satisfying similarity as in Fig. 3b can be constructed by moving the structure-soil
interface outwards. This procedure should be compared with that of truncating the discretization of
the interfaces extending to infinity as used in the boundary-element method.

As no other approximation than that of the finite-element method is introduced, the consistent in-
finitesimal finite-element cell method converges to the ezact solution in the finite-element sense in the
circumferential directions. Furthermore, as the limit of the infinitesimal cell width is performed analyti-
cally, the method is ezact in the radial direction. The consistent infinitesimal finite-element cell method
is thus a boundary finite-element method combining the advantages of the boundary-element method
and the finite-element method.

The consistent-boundary method (Kausel, Roésset and Waas, 1975) to analyse a horizontally layered
medium is a special case of the consistent infinitesimal finite-element cell method where the characteristic
lengths of the interior and exterior boundaries are the same.

BENCHMARK EXAMPLES

Examples of increasing complexity with available analytical or other numerical results are calculated
with the consistent infinitesimal finite-element cell method. The examples can only be sketched. For
details Wolf and Song (1996) should be consulted. The structure-medium interface is discretized with
surface finite elements resulting in square matrices [M°(t)] or [§%°(w)] of the order of the total number
of degrees of freedom. To ease the presentation of the results, a prescribed spatial motion pattern is
introduced to calculate the equivalent coefficient. To evaluate M ®(t) calculated in the time domain
using the consistent infinitesimal finite-element cell method, a Fourier transformation is performed
which permits $°(w) to be determined, for which other solutions exist for comparison. S*(w) is non-
dimensionalized and then decomposed into the spring coefficient k(ao) and the damping coefficient c(ap)
with the dimensionless frequency a.

Spherical Cavity Embedded in Full-Space

A spherical cavity embedded in a full-space with a uniform radial displacement uq(¢) enforced on the
structure-soil interface illustrated in Fig. 4 is analysed with the surface finite-element discretization of
the structure-soil interface shown in Fig. 5. For compressible elasticity (Poisson’s ratio = 0.25) M*(t)
is presented in Fig. 6 and for incompressible elasticity (Poisson’s ratio = 0.5) the interaction force R(t)
resulting from an acceleration step function is plotted in Fig. 7.
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Fig. 4. Spherical cavity embedded in full-space Fig. 5. Finite-element mesh of one octant of
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Circular Cavity Embedded in Full-Plane

A circular cavity embedded in a full-plane with a translational motion uo(t) enforced on the structure-
soil interface shown in Fig. 8 is calculated with 4 3-node line elements per quarter of the structure-
soil interface. For compressible elasticity (Poisson’s ratio = 1/3) §°(w) determined directly in the
frequency domain using the consistent infinitesimal finite-element cell method is plotted in Fig. 9. For
incompressible elasticity, M®(t) is calculated and then transformed to $*°(w) shown in Fig. 10.

Fig. 8. Circular cavity embedded in full-plane with prescribed translational motion

Semi-Infinite Wedge

The in-plane motion of a semi-infinite wedge with an opening angle = 30°, a free and a fixed boundary
and 3 zones of different shear moduli G (G1/G, = G3/G2 = 10) with a prescribed horizontal displace-
ment shown in Fig. 11 is processed with 6 3-node line elements on the structure-soil interface. M*(?)
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Fig. 9. Dynamic-stiffness coefficient of circular cavity embedded in compressible full-plane calculated
directly in frequency domain
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Fig. 10. Dynamic-stiffness coefficient of circular cavity embedded in incompressible full-plane

is plotted in Fig. 12.

Out-of-Plane Motion of Strip Foundation

The out-of-plane (anti-plane) motion of a rectangle (e = b) embedded in an inhomogeneous half-plane
(G2/G1 = G3/G3 = 4) shown in Fig. 13 is addressed with 24 3-node line elements on the structure-soil
interface. M (t) corresponding to twisting of the rigid interface is plotted in Fig. 14.

In-Plane

Motion of Strip Foundation

The in-plane motion of a rectangle embedded in a transversely isotropic half-plane shown in Fig. 15 is
calculated. The rocking dynamic-stiffness coefficient of a rigid interface $°°(w) determined from M (t)
represented in Fig. 16 agrees well with the boundary-element results of Wang and Rajapakse (1991).

Fig. 11. Inhomogeneous semi-infinite wedge
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Fig. 12. Acceleration unit-impulse response co-
efficient of inhomogeneous semi-infinite wedge
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Fig. 15. Strip foundation with rectangular cross section embedded in transversely isotropic half-plane
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Fig. 16. Rocking dynamic-stifiness coefficient of rigid strip foundation embedded in transversely
isotropic half-plane

Prism Embedded in Half-Space

A prism (e = 2/3b) embedded in an inhomogeneous half-space (G, = 4G,) shown in Fig. 17a is analysed
with the finite-element mesh of the structure-medium interface of Fig. 17b. A rigid interface is assumed.
The horizontal S®(w) calculated directly in the frequency domain for the homogeneous case (G, = Gy)
is represented in Fig. 18 with the boundary-element results of Dominguez (1993). The rocking and
torsional M°(t) for the inhomogeneous case are plotted in Fig. 19.

The results of the consistent infinitesimal finite-element cell method agree very well for a large range of
problems with analytical, extended mesh or boundary-element solutions.
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(a) geometry with similarity (b) finite-element discretization of structure-soil
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Fig. 17. One quarter of square prism embedded in inhomogeneous half-space

12 _20
- g
10 S
E N&\ 1.51
'ui'o.s g
go.s E1 o
w o]
80_4- ....... BOUNDARY ELEMENT o <. BOUNDARY ELEMENT
@ Lo
20.2- a
g0.2 ‘E:
a
0.0 0.0
0.0 25 0.0 25

0.5 1.0 15 20 05 10 15 20
DIMENSIONLESS FREQUENCY ag=0b/c, DIMENSIONLESS FREQUENCY ag=tob/cs

Falf 18. Horizontal dynamic-stiffness coefficient of rigid prism embedded in homogeneous half-space
calculated directly in frequency domain
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