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ABSTRACT

The pseudospectral method is an alternative attractive finite-difference modeling method which offers
high-accuracy results with substantially less computation time and memory than traditional scheme.
One of the attractive characteristics of the pseudospectral method is that the differentiation of field
variables are analytically calculated in the wavenumber space. Recently the advantage of the computer
performance and parallel programming algorithms enable us applying the method for large scale 2-D
and 3-D elastic modeling. The power of the forward modeling of 3-D elastic wavefield provides a direct
means of understanding the seismic wave propagation through the use of the snapshots of the evolution
of the wavefield in time and space and theoretical seismograms, to compliment the three-component
observations.
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INTRODUCTION

The pseudospectral method (e.g., Kosloff and Baysal, 1982) is an alternative attractive to the other
numerical techniques, such as finite-difference or finite-element method, which requires several orders of
magnitude less computer memory and time than traditional schemes (e.g., see Daudt et al,, 1989). In
the pseudospectral method the spatial differentiation in the equation system are calculated analytically
in the wavenumber domain. The transformation between physical and the wavenumber domain are
performed efficiently by use of the fast Fourier transforms (FFT). Since only two grids per wavenum-
ber is theoretically sufficient to treat the wavefield, total memory required for the calculation can be
considerably reduced. The memory requirement for the pseudospectral method compared to the forth-
order finite-difference scheme is about 1/8 and 1/64 for 2-D and 3-D modeling, respectively (e.g., see
Fornberg, 1987). Therefore the method has typically been applied for large scale and high-resolution
forward modeling of elastic wave propagation for explosion experiments using the 2-D scheme (Kang
and McMechan, 1990) and 2.5-D scheme (Furumura and Takenaka, 1996).

After Kosloff and Baysal (1982) first applied the method for the time domain solution of the seismic
wavefield, very large amount of techniques such as an absorbing boundary to minimize the edge effect,



stable differentiation technique for discontinuous data and mapping technique for an accurate incor-
poration of curved interface have been successfully developed to apply the method for actual models.
Since the pseudospectral method directly calculate the equation of motion rather than wave equation
itself it is rather straightforward to incorporate seismic source by use of the equivalent body force and
anelastic effect by a simple modification of the stress-strain equation (e.g., Carcione, 1994). Advantage
of the high-performance computers coupled with parallel programming algorithms getting gradually en-
ables us the 3-D pseudospectral applications. Pioneering work of Reshef et al. (1988) who implemented
the 3-D pseudospectral code onto the CRAY X/MP vector computer and parallel 3-D pseudospectral
modeling developed by Furumura et al. (1995) may demonstrate the arrival of 3-D modeling age.

The object of the present paper is to review the numerical modeling of seismic wave propagation by
the pseudospectral method with remarkable corresponding numerical techniques to incorporate the
boundaries in the model as well as an efficient computing by use of the parallel computers. In the
following section a brief summary of the pseudospectral calculation for the 3-D elastic wavefield will be
described. Then an simple experiment for a surface wave propagation in a basin will be undertaken to
show the feasibility of the parallel 3-D pseudosoectral computing.

3-D PSEUDOSPECTRAL ELASTIC MODELING

For an isotropic linear elastic medium the equation of motion in the 3-D rectangular system is given by
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where 0,y = 04(7,9,2,1),(p,q¢ = z,9,2) are the stress components at point (z,y,2) in time ¢, f, =
oz, y,2,1),(p = z,9, z) body force, U, = U,(z,y,2,t) the second time derivatives of displacement
(i.e. acceleration), and p = p(z,y, 2) the density. For marching time, the second-order finite-difference
scheme is often used with a time increment intervals A¢. To keep a dispersion error, caused by the
finite-difference approximation, down to an acceptable level the criterion of Daudt et al. (1989) of
At < 0.26Ar/VE> is used, where V£** is the maximum P-wave velocity in the model and Ar denote
the grid spacing.

The strain components e,q = €y(z, ¥, 2,t), (p,g¢ = z,y,z) are calculated by the spatial differentiation
of the displacement components as
18U, aU,
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which is related to the stress components through Hooke’s law with the Lamé’s constants A = A(z, y, 2)
and p = p(z,y,2) as

Opg = A (€zc + €y + ezz)5pq + 2p epq, (p,q=1z,9,2), (3)

where 6,4 is the Kronecker delta. After the seismic disturbance of seismic point source is incorporated
in the equation of (1) by use of an equivalent body force (e.g., see Aki and Richards, 1980, chap. 3) the
solution of the full system of egs. from (1) to (3) is marched forward in time.

Fourier differentiation

The main attractive advantage of the pseudospectral method is that the spatial differentiations appear
in the eqs. (1) and (3) are efficiently calculated by use of the FFT. In this section the characteristics of
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Fig. 1. Numerical error for each wavenumber produced by finite-order

approximation of the differentiation: comparisons between 2-nd,
4-th, 8-th order central difference and Fourier difference (exact).

the Fourier differentiation as an infinite-order high-accuracy finite-difference scheme is compared with
the traditional finite-order approximations.

The differentiation by use of the FFT is accomplished as follows; First the data to be differentiated
f(nAr),(n=0,1,.., N — 1) is transformed into the wavenumber domain:

N-1

F(IAk) = Ar Y~ f(nAr)e 2N, (4)
n=0

where F(IAr); (1 =0,1,..., N — 1); (Ak = 2r/(NAr)) represents the Fourier transform of f(nAr). The
transformed data is then multiplying the corresponding discrete wavenumbers i({Ak), and the derivative
is transformed back into the physical domain using an inverse FFT, that is

N-1
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This is usually called as N-th order (or infinite-order) differentiation scheme. While a second-order
central finite-difference scheme, which is equivalent to multiplying the isin(/Ak) in the wavenumber
space (see, Huntley, 1989), that is
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The derivatives by the lower-order approximations clearly involve errors in large wavenumbers. Figure 1
comparing the numerical errors produced by 2nd, 4-th and 8-th order central difference formula with an
exact result by the Fourier differentiation. Clearly significant energy extinction in large wavenumbers
producing large problems especially by use of lower-order approximations. On the other hands the
analytical differentiation in the pseudospectral calculation allows all wavenumber to propagate in the
model, and in consequence high-frequency noise appeared in the calculation and gradually enlarged
with large time steps sometimes cause an oscillation noise on the waveform .
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Fig. 2. Example for domain decomposition of the 3-D wavefield with
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vertical (z) differentiation with communication between proces-
sors.

Boundary condition

Boundary conditions such as free-surface and absorbing boundary (or equivalently non-reflecting bound-
ary) are required for applying the pseudospectral method to practical applications of bounded model.

The free-surface boundary is simply incorporated in the modeling by specifying zero values on the stress
components above the upper side of the surface. A number of zeros prepared prior to the differentiation
are then removed irnmediately after the calculation to reduce the total computational memory. Since
the large discontinuity in the wavefield along the free-surface sometimes cause unstable oscillations,
an stable differentiation technique for discontinuous data “Symmetric differentiation” (Furumura and
Takenaka, 1995) is usually applied for the vertical (z) differentiation of the displacement components.

An wraparound noise produced by the periodic boundary conditions implicitly involved in the FFT is
efficiently reduced by tapering approach (Cerjan et al., 1985) or by use of a warparound elimination
technique based on an anti-periodic extension of the wavefield (Furumura and Takenaka, 1995).

PARALLEL 3-D PSEUDOSPECTRAL CALCULATION

For the 3-D modeling the spatial differentiation by means of the Fourier transform is carried out along
z, y and 2z directions of the 3-D variables, which expends more than 50 % of the total pseudospectral
computation time. It should be noted that enormous FFTs are used in the 3-D modeling, for example,
in the case of 128 model with a time step of 1000 needs more than six hundred million 1-D FFTs.
For this reason it has long been experimented the use of high-performance transforms such as fast
Hartley transform (e.g., see Saatcilar and Ergintav, 1991) and the FFT for real-sequenced numbers
(Furumura et al., 1993). However, such a FFT for a 1-D data can not efficiently be implemented on
the current super computers because the 1-D FFT with relative short data (e.g., N=128, 256) contains
very small vector operations and the overhead of the vector calculation is considerably large. Recently,
parallel pseudospectral computing as an alternative attractive approach is receiving attentions for a
practical application of large scale pseudospectral modeling. For example, Renaut and Woo (1992)
examined an efficiercy for a parallel-FFT and applied for the calculation of 1-D scalar wavefield using
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Fig. 3. Theoretical (line) and experimental (mark) efficiency for speed

up rate of parallel computing with a number of processors using
the CM-5 and SPARC-10 workstation clusters.

a 32-node Intel iPSC1 hyper-cube parallel computer. Sato et al. (1985) applied 128-node NCUBE/1
hyper-cube parallel machine for calculating a 2-D acoustic wavefield. Liao and McMechan (1993)
calculated 2-D viscoacoustic wavefield by use of a a Intel iPSC860 distributed-memory multi-processor
system. A parallel 3-D pseudospectral code for elastic wavefield was first developed by Furumura et al.
(1995). In the following section we briefly review the parallel 3-D pseudospectral modeling based on
the decomposition of the wave field and then a simple example of the surface wave propagation in the
basin is simulated to show the feasibility of the method.

Domain decomposed parallel pseudospectral computation

The parallelization of a problem is achieved by dividing the 3-D domain into NP subdomains each with
the same number of grids and assigning onto NP processors (Fig. 2). Such a parallelism is a special kind
of parallel computing style, where the same operation is repeated on each processor for the subdomain
with inter communication between processors, and the data is stored into its local memory.

In each subdomain spatial differentiation of horizontal (z, 2) direction is calculated individually by each
processor and only the vertical (2) differentiation requires communications between the subdomains.
Exchange of data between processors are achieved by use of a “message passing” programming for which
we utilized the “P4” parallel programming library (Butler and Lusk, 1994). The p4 is a standard library
of macros and subroutines for parallel programming supporting a variety style of parallel machines such
as shared-memory multi-CPU machine, distributed-memory multi-CPU computers and workstation-
clusters connected with computer network, thereby the code is easily implemented on several kind of
parallel computers without modification of the program.

Efficiency of the parallel 3-D pseudospectral code is experimented using a Thinking Machine CM-5
parallel computer, a workstation-cluster of Sun Microsystems SPARC Station-10 system connecting
with the Ethernet network and the DEC-alpha multi-CPU workstation, which is agreed well with
the theoretical efficiency of previous knowledge defined by the ratio of communication speed between
processors to the CPU speed. Figure 3 illustrating the benchmark results of the speed-up rate of
the parallel pseudospectral code implemented on many parallel platform, which shows the maximum
speed-up rate of 24 for 32-node CM-5, 4.5 for eight-processors SPARC-10-cluster and 1.4 for two-CPU
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Numerical modeling of 3-D wavefield in the basin model. (a)
Configurations of 3-D model with an double-couple point source
and seismic line array stations arranged on the surface (dashed
line), (b) Snapshots of the 3-D wavefield near the free-surface,
(c) Synthetic three-component seismograms of vertical, radial
and transverse components.
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3-D modeling of the elastic wavefield

In order to demonstrate the feasibility of the parallel pseudospectral computing we have undertaken a
3-D elastic modeling for a simple basin model. The model we used here have a size of 102 km (N-S)
and 205 km (E-W) long by 102 km deep, surrounded by suitable absorbing buffer zone (Cerjan et al.,
1985) to minimize the grid-edge effect. The domain is divided into 128 256 * 128 points with a regular
grid spacing of 0.8 km. We will simulate the surface wave propagation in the simplified basin model for
the Tokachi plain, Hokkaido, Japan, which have a size of 100 km (N-S) by 50 Km (E-W) long and a
maximum thickness of 2.6 km (see, Furumura and Sasatani, 1995). The basin structure is represented
by three-layers of sediments with the P-wave velocities of =2.2, 4.9 and 5.6 km s~1, S-wave velocities
of 3=1.0, 2.8 and 3.2 km s and densities of p=2.0, 2.5 and 2.6 Mg m~3, which producing very strong
velocity contrast to the the crust («=6.6 km s™!, 5=3.8 km s, p=2.9 Mg m~3) and the uppermost
mantle (¢=8.0 km s™!, #=4.0 km s™*, p=3.3 Mg m~3). The seismic point source for a share dislocation
fault have a maximum frequency of around 0.5 Hz and is placed 100 km away from the center of the
basin and a depth of 67 km (Fig. 4a). The calculation is performed using the DEC7200-620 workstation
(SPECfp92:201) with two processors which used the memory of 488 MB and the CPU time of 180 hours
for calculating the wave propagation of 100 s.

The sequence of snapshots of the wavefield at each time is displayed in Fig. 4b which bring us better
insights into the understanding of the seismic behavior at each time and space. In the 12s flame we see
the P wave incident into the basin which produce only weak $ conversions at the side of the boundary
and passing through the basin without affected by the crustal variations. In the 28 s flame we find
the strong S-to-P conversions generated at the boundary which leads to a large surface wave. In the
next few flames we can see a prominent surface wave propagating within the basin with very slow
propagation speed (less than 1.0 km s ~1) as well as large scattering wave multiply reflected between
the free-surface and the crust-basin interface. We can also discern a creeping wave propagating along
the curved interface.

Synthetic seismograms of ground motion of vertical, radial and transverse components are illustrated
in Fig. 4c, in which we can see a prominent of later phases generated at the south edge of the basin.
We can also see the Rayleigh wave on vertical and radial components at a distances ranged from 70 to
90 km predominating a monochromatic frequencies of 2.2 Hz is agreed very well with the observations
(Furumura and Sasatani, 1995).

DISCUSSION AND CONCLUSIONS

Numerical modeling of seismic wave propagation in 3-D heterogeneous media by the pseudospectral
method with some corresponding numerical techniques has been reviewed in the present paper. An
attractive advantage of the time domain solution of the numerical modeling method, which bring us
direct insights into understanding the complex seismic behavior in the laterally heterogeneous medium
through the use of a sequence of snapshots wavefield and synthetic seismograms of three-components
data. High-accuracy and stable differentiation used in the pseudospectral modeling considerably reduce
the computer memory for 3-D variables. Recent studies for high-performance computing by use of the
parallel-computers may demonstrating the arrival of 3-D modeling age.



REFFERENCES

Aki, K. and P. Richards (1980). Quantitative seismology Theory and Methods, in Chap. 3, Freeman
and Co., Sanfrancisco.

Butler, R. M. and E. L. Lusk (1994). Monitors, messages and clusters: the p4 parallel programming
system, Parallel Comput., 20, 547-564.

Carcione, J. M. (1994). The wave equation in generalized coordinates, Geophysics, 59, 1911-1919.

Cerjan, C., D. Kosloff, R. Kosloff and M. Reshef (1985). A nonreflecting boundary condition for discrete
acoustic and elastic wave equations, Geophysics, 50, 705-708.

Daudt, C. R., L. W. Braile, R. L. Nowack and C. S. Chiang (1989). A comparison of finite-difference
and Fourier method calculations of synthetic seismograms, Bull. seism. Soc. Am., 79, 1210-1230.

Fornberg, B. (1987). The pseudospectral method: Comparisons with finite-differences for the elastic
wave equation, Geophysics, 52, 481-501.

Furumura, T., B.L.N. Kennett and H. Takenaka (1995). Parallel 3-D pseudospectral simulation of wave
propagation by using a Connection machine and workstation-clusters, Geophysics, (submitted).

Furumura, M. and T. Sasatani (1995). The secondary generated surface waves in the Tokachi Plain,
Hokkaido, Japan, 43, (in press).

Furumura, T. and H. Takenaka (1992). A stable method for numerical differentiation of data with
discontinuities at end-points by means of Fourier transform-Symmetric differentiation, Butsuri-
Tansa (J. SEGJ), 45, 303-309 (in Japanese with English abstract).

Furumura, T., H. Takenaka, and I. Ninomiya (1993). Is the fast Hartley transform more efficient than
FFT ?, Trans. Japan Soc. Indust. Appl. Math., 3, 245-255 (in Japanese with English abstract).

Furumura, T. and H. Takenaka (1995). A wraparound elimination technique for the pseudospectral
wave synthesis using an antiperiodic extension of the wavefield, Geophysics, 60, 302-307.

Furumura, T., H. Takenaka (1996). 2.5-D modeling of elastic wave using the pseudospectral method,
Geophys. J. Int. , 124, (in press).

Huntley, E (1989). Comments upon “Differentiation by Fourier transformation and connection with
differentiation by finite differencing”, Quant. Appl. Math, XLVII, 309-311.

Kang, I. B. and G. A. McMechan (1990). Two-dimensional elastic pseudo-spectral modeling of wide-
aperture seismic array data with application to the Wichita uplift-anadarko basin region of south-
western Oklahoma, Bull. seism. Soc. Am., 80, 1677-1695.

Kosloff, D. and E. Baysal (1982). Forward modeling by a Fourier method, Geophysics, 47, 1402-1412.

Liao, Q. and G.A. McMechan (1993). 2-D pseudo-spectral viscacoustic modeling in a distributed-
memory multi-processor computer, Bull. seism. Soc. Am., 83, 1345-1354.

Renaut, R. A. and M. L. Woo (1992). Parallel pseudospectral method for the solution of the wave
equation in Wave propagation and inversion, Society for Industrial and Applied Mathematics,
124-134.

Reshef, M., D. Kosloff, M. Edwards and C. Hsiung (1988). Three-dimensional elastic modeling by the
Fourier method, Geophysics, 53, 1184-1193.

Sato, T., T. Matsuoka and T. Tsuru (1995). Wave field modeling by pseudospectral method on a parallel
computer (2) - seismic data simulation and processing, Proc. SEGJ conference, 92, 392-396.



